Obtaining a Planar Graph by Vertex Deletion

被引:0
|
作者
Dániel Marx
Ildikó Schlotter
机构
[1] Budapest University of Technology and Economics,Department of Computer Science and Information Theory
来源
Algorithmica | 2012年 / 62卷
关键词
Planar graph; Apex graph; FPT algorithm; Vertex deletion;
D O I
暂无
中图分类号
学科分类号
摘要
In the k-Apex problem the task is to find at most k vertices whose deletion makes the given graph planar. The graphs for which there exists a solution form a minor closed class of graphs, hence by the deep results of Robertson and Seymour (J. Comb. Theory, Ser. B 63(1):65–110, 1995; J. Comb. Theory, Ser. B 92(2):325–357, 2004), there is a cubic algorithm for every fixed value of k. However, the proof is extremely complicated and the constants hidden by the big-O notation are huge. Here we give a much simpler algorithm for this problem with quadratic running time, by iteratively reducing the input graph and then applying techniques for graphs of bounded treewidth.
引用
收藏
页码:807 / 822
页数:15
相关论文
共 50 条
  • [41] Applications of Laplacian spectrum for the vertex-vertex graph
    Ju, Tingting
    Dai, Meifeng
    Dai, Changxi
    Sun, Yu
    Song, Xiangmei
    Su, Weiyi
    MODERN PHYSICS LETTERS B, 2019, 33 (17):
  • [42] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [43] Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion
    Agrawal, Akanksha
    Lokshtanov, Daniel
    Misra, Pranabendu
    Saurabh, Saket
    Zehavi, Meirav
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1383 - 1398
  • [44] VERTEX DEGREES OF PLANAR GRAPHS
    COOK, RJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (03) : 337 - 345
  • [45] On the vertex-arboricity of planar
    Raspaud, Andre
    Wang, Weifan
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1064 - 1075
  • [46] Reconfiguration of Vertex Covers in a Graph
    Ito, Takehiro
    Nooka, Hiroyuki
    Zhou, Xiao
    COMBINATORIAL ALGORITHMS, IWOCA 2014, 2015, 8986 : 164 - 175
  • [47] Vertex Stress Polynomial of a Graph
    Rai, Prajna S.
    Rajendra, R.
    Reddy, P. Siva Kota
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [48] THE VERTEX MONOPHONIC NUMBER OF A GRAPH
    Santhakumaran, A. P.
    Titus, P.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (02) : 191 - 204
  • [49] On vertex ranking of a starlike graph
    Hsieh, SY
    INFORMATION PROCESSING LETTERS, 2002, 82 (03) : 131 - 135
  • [50] Reconfiguration of Vertex Covers in a Graph
    Ito, Takehiro
    Nooka, Hiroyuki
    Zhou, Xiao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (03): : 598 - 606