Obtaining a Planar Graph by Vertex Deletion

被引:0
|
作者
Dániel Marx
Ildikó Schlotter
机构
[1] Budapest University of Technology and Economics,Department of Computer Science and Information Theory
来源
Algorithmica | 2012年 / 62卷
关键词
Planar graph; Apex graph; FPT algorithm; Vertex deletion;
D O I
暂无
中图分类号
学科分类号
摘要
In the k-Apex problem the task is to find at most k vertices whose deletion makes the given graph planar. The graphs for which there exists a solution form a minor closed class of graphs, hence by the deep results of Robertson and Seymour (J. Comb. Theory, Ser. B 63(1):65–110, 1995; J. Comb. Theory, Ser. B 92(2):325–357, 2004), there is a cubic algorithm for every fixed value of k. However, the proof is extremely complicated and the constants hidden by the big-O notation are huge. Here we give a much simpler algorithm for this problem with quadratic running time, by iteratively reducing the input graph and then applying techniques for graphs of bounded treewidth.
引用
收藏
页码:807 / 822
页数:15
相关论文
共 50 条
  • [1] Obtaining a planar graph by vertex deletion
    Marx, Daniel
    Schlotter, Ildiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2007, 4769 : 292 - +
  • [2] Obtaining a Planar Graph by Vertex Deletion
    Marx, Daniel
    Schlotter, Ildiko
    ALGORITHMICA, 2012, 62 (3-4) : 807 - 822
  • [3] Inserting a Vertex into a Planar Graph
    Chimani, Markus
    Gutwenger, Carsten
    Mutzel, Petra
    Wolf, Christian
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 375 - 383
  • [4] Graph Energy Change Due to Vertex Deletion
    Espinal, Carlos
    Rada, Juan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (01) : 89 - 103
  • [5] ON THE LINEAR VERTEX-ARBORICITY OF A PLANAR GRAPH
    POH, KS
    JOURNAL OF GRAPH THEORY, 1990, 14 (01) : 73 - 75
  • [6] On the feedback vertex set problem for a planar graph
    Hackbusch, W
    COMPUTING, 1997, 58 (02) : 129 - 155
  • [7] On the feedback vertex set problem for a planar graph
    Praktische Mathematik, Chrstn.-Albrechts-Univ. zu Kiel, D-24098 Kiel, Germany
    Comput Vienna New York, 2 (129-155):
  • [8] The non planar vertex deletion of Cn x Cm
    de Mendonça, CFX
    Xavier, EF
    Stolfi, J
    Faria, L
    de Figueiredo, CMH
    ARS COMBINATORIA, 2005, 76 : 3 - 28
  • [9] Multi-vertex deletion graph reconstruction numbers
    Rivshin, David
    Radziszowski, Stanislaw P.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2011, 78 : 303 - 321
  • [10] Parameterized complexity of vertex deletion into perfect graph classes
    Heggernes, Pinar
    Van't Hof, Pim
    Jansen, Bart M. P.
    Kratsch, Stefan
    Villanger, Yngve
    THEORETICAL COMPUTER SCIENCE, 2013, 511 : 172 - 180