Residual conductance of correlated one-dimensional nanosystems: A numerical approach

被引:0
|
作者
R. A. Molina
P. Schmitteckert
D. Weinmann
R. A. Jalabert
G.-L. Ingold
J.-L. Pichard
机构
[1] Centre d’Études de Saclay,CEA/DSM, Service de Physique de l’État Condensé
[2] Universität Karlsruhe,Institut für Theorie der Kondensierten Materie
[3] UMR 7504 (CNRS-ULP),Institut de Physique et Chimie des Matériaux de Strasbourg
[4] Universität Augsburg,Institut für Physik
[5] Université de Cergy-Pontoise,Laboratoire de Physique Théorique et Modélisation
关键词
Renormalization Group; Transmission Coefficient; Interact System; Transmission Probability; Large Ring;
D O I
暂无
中图分类号
学科分类号
摘要
We study a method to determine the residual conductance of a correlated system by means of the ground-state properties of a large ring composed of the system itself and a long non-interacting lead. The transmission probability through the interacting region, and thus its residual conductance, is deduced from the persistent current induced by a flux threading the ring. Density Matrix Renormalization Group techniques are employed to obtain numerical results for one-dimensional systems of interacting spinless fermions. As the flux dependence of the persistent current for such a system demonstrates, the interacting system coupled to an infinite non-interacting lead behaves as a non-interacting scatterer, but with an interaction dependent elastic transmission coefficient. The scaling to large lead sizes is discussed in detail as it constitutes a crucial step in determining the conductance. Furthermore, the method, which so far had been used at half filling, is extended to arbitrary filling and also applied to disordered interacting systems, where it is found that repulsive interaction can favor transport.
引用
收藏
页码:107 / 120
页数:13
相关论文
共 50 条
  • [41] Conductance distribution of disordered quasi one-dimensional wires
    Wölfle, P
    Muttalib, KA
    ANNALEN DER PHYSIK, 1999, 8 (7-9) : 753 - 758
  • [42] Quantum thermal conductance of electrons in a one-dimensional wire
    Chiatti, O.
    Nicholls, J. T.
    Proskuryakov, Y. Y.
    Lumpkin, N.
    Farrer, I.
    Ritchie, D. A.
    PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [43] Thermal conductance of one-dimensional disordered harmonic chains
    Ash, Biswarup
    Amir, Ariel
    Bar-Sinai, Yohai
    Oreg, Yuval
    Imry, Yoseph
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [44] One-dimensional stochastic heat equation with discontinuous conductance
    Zili, Mounir
    Zougar, Eya
    APPLICABLE ANALYSIS, 2019, 98 (12) : 2178 - 2191
  • [45] Critical conductance of a one-dimensional doped Mott insulator
    Garst, M.
    Novikov, D. S.
    Stern, Ady
    Glazman, L. I.
    PHYSICAL REVIEW B, 2008, 77 (03)
  • [46] Quantized conductance in a one-dimensional ballistic oxide nanodevice
    Jouan, A.
    Singh, G.
    Lesne, E.
    Vaz, D. C.
    Bibes, M.
    Barthelemy, A.
    Ulysse, C.
    Stornaiuolo, D.
    Salluzzo, M.
    Hurand, S.
    Lesueur, J.
    Feuillet-Palma, C.
    Bergeal, N.
    NATURE ELECTRONICS, 2020, 3 (04) : 201 - 206
  • [47] Quantized conductance of one-dimensional doped mott insulator
    Mori, M
    Ogata, M
    Fukuyama, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (11) : 3363 - 3366
  • [48] Role of phason defects on the conductance of a one-dimensional quasicrystal
    Moulopoulos, K
    Roche, S
    PHYSICAL REVIEW B, 1996, 53 (01): : 212 - 220
  • [49] Conductance distribution of disordered quasi one-dimensional wires
    Wölfle, P.
    Muttalib, K.A.
    Annalen der Physik (Leipzig), 1999, 8 (07): : 753 - 758
  • [50] Residual coordinates over one-dimensional rings
    El Kahoui, M'hammed
    Essamaoui, Najoua
    Ouali, Mustapha
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (06)