Equations of nonlinear dynamics of elastic shells in cylindrical Eulerian coordinates

被引:0
|
作者
L. M. Zubov
机构
[1] Southern Federal University,
来源
Doklady Physics | 2016年 / 61卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The equations of dynamics of elastic shells subjected to large deformations are formulated. The Eulerian coordinates on a circular cylinder and time are accepted as independent variables, and one of the unknown functions is the distance from a point of the shell surface to the cylinder axis. The equations of dynamics of nonlinearly elastic shells in the Eulerian coordinates are convenient for exact formulation of the problem on the interaction of strongly deformable shells with moving fluids and gases. The equations obtained can be used for dynamic calculations of fluids and gases flowings in pipelines, blood vessels, hoses, and other nonlinearly deformable thin-walled tubular elements of constructions.
引用
收藏
页码:218 / 222
页数:4
相关论文
共 50 条
  • [21] VIBRATIONS OF GEOMETRICALLY NONLINEAR VISCOUSELASTIC CYLINDRICAL SHELLS INTERACTING WITH AN ELASTIC MEDIUM
    Ismonovich, Karimov Abdusamat
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 948 - 954
  • [22] The nonlinear vibrations of functionally graded cylindrical shells surrounded by an elastic foundation
    G. G. Sheng
    X. Wang
    G. Fu
    H. Hu
    Nonlinear Dynamics, 2014, 78 : 1421 - 1434
  • [23] Nonlinear behaviour of short elastic cylindrical shells under global bending
    Fajuyitan, O. Kunle
    Sadowski, Adam J.
    Wadee, M. Ahmer
    Rotter, J. Michael
    THIN-WALLED STRUCTURES, 2018, 124 : 574 - 587
  • [24] Asymptotic analysis of nonlinear dynamics of simply supported cylindrical shells
    K. V. Avramov
    Yu. V. Mikhlin
    E. Kurilov
    Nonlinear Dynamics, 2007, 47 : 331 - 352
  • [25] The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells
    A. I. Zemlyanukhin
    I. V. Andrianov
    A. V. Bochkarev
    L. I. Mogilevich
    Nonlinear Dynamics, 2019, 98 : 185 - 194
  • [26] On viscous limit solutions of the Riemann problem for the equations of isentropic gas dynamics in Eulerian coordinates
    Andreianov, BP
    SBORNIK MATHEMATICS, 2003, 194 (5-6) : 793 - 811
  • [27] Asymptotic analysis of nonlinear dynamics of simply supported cylindrical shells
    Avramov, K. V.
    Mikhlin, Yu. V.
    Kurilov, E.
    NONLINEAR DYNAMICS, 2007, 47 (04) : 331 - 352
  • [28] The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells
    Zemlyanukhin, A. I.
    Andrianov, I. V.
    Bochkarev, A. V.
    Mogilevich, L. I.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 185 - 194
  • [29] ANALYSIS OF NONLINEAR MAGNETOELASTIC DYNAMICS AND STABILITY OF CONDUCTIVE CYLINDRICAL SHELLS
    Hu Yuda
    Zhao Jiang
    Pi Jun
    Qing Guanghui
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2010, 10 (01) : 153 - 164
  • [30] NONLINEAR DYNAMICS OF FUNCTIONALLY GRADED CYLINDRICAL SHELLS WITH INTERNAL FLUID
    Silva, Frederico M. A.
    Montes, Roger Otavio P.
    Goncalves, Paulo B.
    del Prado, Zenon J. G. N.
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 6, 2016,