Micellar interaction and thermodynamic behavior between double-chained surface active ionic liquid and conventional surfactants in aqueous solution

被引:0
|
作者
Ahmad Bagheri
机构
[1] Semnan University,Department of Chemistry
来源
Korean Journal of Chemical Engineering | 2023年 / 40卷
关键词
Critical Micelle Concentration; TEGO; Interaction Parameter; Counter Ion Binding; Mixed Micelle;
D O I
暂无
中图分类号
学科分类号
摘要
The mixed micellar properties of double-chained surface active ionic liquid (1, 3-didecyl-2-methylimidazolium chloride or TEGO) with two conventional cationic surfactants, dodecyltrimethylammonium bromide (DOTAB) and cetyltrimethylammonium bromide (CTAB) were investigated by using surface tension and conductivity experiments in aqueous solution at 303.15 K. TEGO is a special surface active agent with two specific critical micelle concentrations (CMC). To consider the effect of hydrophobic groups in synergism between components (surfactant and TEGO) in the mixed micelle, two cationic surfactants were selected that differed only in the length of the hydrocarbon chain (DOTAB: C12 and CTAB: C16). The experimental critical micelle concentration (CMCexp), degree of micellar dissociation (g), the ideal critical micelle concentration (CMCid), micellar mole fractions (X1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{X}}_1^m$$\end{document} and X2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{X}}_2^m$$\end{document}) and the interaction parameter (βm) were determined by using Rubingh’s model. The achieved βm of the studied system is negative in the whole compositions denoting the synergistic interaction between components and their values increase with increasing chain lengths of surfactant from DOTAB to CTAB. The activity coefficients (f1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{f}}_1^m$$\end{document} and f2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{f}}_2^m$$\end{document}) are always less than unity in all mole fractions signifying non-ideality in the mixtures. Thermodynamic functions for mixed systems were estimated. The standard Gibbs energy of micellization (ΔGmic0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta {\rm{G}}_{mic}^0$$\end{document}) associated with transfer of surfactant monomers from the bulk phase to micelle phase was evaluated according to Zana’s model in different situations and discussed with logical points in the new approach. The results show that the effect of hydrophobicity can regulate the synergism between cationic surfactants in the same electrical charges of head groups.
引用
收藏
页码:2017 / 2025
页数:8
相关论文
共 50 条
  • [31] Inclusion-dissociation behavior between non-ionic surfactants and molecular nanotubes in aqueous solution
    Funaki, T
    Simomura, T
    Ito, K
    KOBUNSHI RONBUNSHU, 2001, 58 (06) : 299 - 303
  • [32] Surface adsorption and bulk properties of polyoxyethylene-polyoxypropylene random copolymer-type double-chained surfactants in quaternary-ammonium-salt-type amphiphilic gemini ionic liquids
    Kawai, Risa
    Niki, Maiko
    Yada, Shiho
    Yoshimura, Tomokazu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 658
  • [33] Formation of Mixed Micelle in an Aqueous Mixture of a Surface Active Ionic Liquid and a Conventional Surfactant: Experiment and Modeling
    Das, Sourav
    Ghosh, Soumen
    Das, Bijan
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (10): : 3784 - 3800
  • [34] Insights into the interaction of Bovine Serum Albumin with Surface-Active Ionic Liquids in aqueous solution
    Alves, Marcia M. S.
    Araujo, Joao M. M.
    Martins, Ivo C.
    Pereiro, Ana B.
    Archer, Margarida
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 322
  • [35] Synthesis of trisiloxane-tailed surface active ionic liquids and their aggregation behavior in aqueous solution
    Du, Zhiping
    Li, Enze
    Cao, Yang
    Li, Xiang
    Wang, Guoyong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2014, 441 : 744 - 751
  • [36] Aggregation and surface behavior of aqueous solutions of cis-bis(1,3-diaminopropane)bis(dodecylamine)cobalt(III) nitrate. A double-chained metallosurfactant
    Wagay, T. A.
    Dey, J.
    Kumar, S.
    Aswal, V. K.
    Ismail, K.
    RSC ADVANCES, 2016, 6 (71): : 66900 - 66910
  • [37] Synergism in Mixed Zwitterionic Surface Activity Ionic Liquid and Anionic Surfactant Solution: Analysis of Interfacial and Micellar Behavior
    Gu, Xue-fan
    Huo, Jing
    Wang, Rui-tao
    Wu, Dao-cheng
    Yan, Yong-li
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2015, 36 (03) : 334 - 342
  • [38] Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium
    Pal, Amalendu
    Punia, Renu
    COLLOID AND POLYMER SCIENCE, 2019, 297 (7-8) : 1011 - 1024
  • [39] Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium
    Amalendu Pal
    Renu Punia
    Colloid and Polymer Science, 2019, 297 : 1011 - 1024
  • [40] THERMODYNAMIC STUDY IN AQUEOUS MICELLAR SOLUTIONS AT 298.15 K - COMPARISON OF THE INTERACTIONS BETWEEN IONIC SURFACTANTS (SDS AND CTAB) AND 1-ALCOHOLS OR PHENOL
    BUSSEROLLES, K
    ROUXDESGRANGES, G
    ROUX, AH
    THERMOCHIMICA ACTA, 1995, 259 (01) : 49 - 56