Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings

被引:0
|
作者
Nikola Adžaga
Shiva Chidambaram
Timo Keller
Oana Padurariu
机构
[1] University of,Department of Mathematics, Faculty of Civil Engineering
[2] MIT,Department of Mathematics
[3] Universität Bayreuth,Lehrstuhl Mathematik II (Computeralgebra)
[4] Zahlentheorie und Diskrete Mathematik,Leibniz Universität Hannover, Institut für Algebra
[5] Boston University,Department of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We complete the computation of all Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points on all the 64 maximal Atkin-Lehner quotients X0(N)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_0(N)^*$$\end{document} such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levels N, we classify all Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points as cusps, CM points (including their CM field and j-invariants) and exceptional ones. We further indicate how to use this to compute the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points on all of their modular coverings.
引用
收藏
相关论文
共 50 条