Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings

被引:0
|
作者
Nikola Adžaga
Shiva Chidambaram
Timo Keller
Oana Padurariu
机构
[1] University of,Department of Mathematics, Faculty of Civil Engineering
[2] MIT,Department of Mathematics
[3] Universität Bayreuth,Lehrstuhl Mathematik II (Computeralgebra)
[4] Zahlentheorie und Diskrete Mathematik,Leibniz Universität Hannover, Institut für Algebra
[5] Boston University,Department of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We complete the computation of all Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points on all the 64 maximal Atkin-Lehner quotients X0(N)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_0(N)^*$$\end{document} such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levels N, we classify all Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points as cusps, CM points (including their CM field and j-invariants) and exceptional ones. We further indicate how to use this to compute the Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}-rational points on all of their modular coverings.
引用
收藏
相关论文
共 50 条
  • [1] Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
    Adzaga, Nikola
    Chidambaram, Shiva
    Keller, Timo
    Padurariu, Oana
    RESEARCH IN NUMBER THEORY, 2022, 8 (04)
  • [2] Rational points on Atkin-Lehner quotients of geometrically hyperelliptic Shimura curves
    Padurariu, Oana
    Schembri, Ciaran
    EXPOSITIONES MATHEMATICAE, 2023, 41 (03) : 492 - 513
  • [3] Proving the triviality of rational points on Atkin-Lehner quotients of Shimura curves
    Parent, Pierre
    Yafaev, Andrei
    MATHEMATISCHE ANNALEN, 2007, 339 (04) : 915 - 935
  • [4] Rational points on Atkin-Lehner quotients of Shimura curves of discriminant pq
    Gillibert, Florence
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) : 1613 - 1649
  • [5] On Atkin-Lehner quotients of Shimura curves
    Jordan, BW
    Livné, R
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 : 681 - 685
  • [6] Proving the triviality of rational points on Atkin–Lehner quotients of Shimura curves
    Pierre Parent
    Andrei Yafaev
    Mathematische Annalen, 2007, 339 : 915 - 935
  • [7] Quadratic Chabauty for Atkin-Lehner quotients of modular curves of prime level and genus 4, 5, 6
    Adzaga, Nikola
    Arul, Vishal
    Beneish, Lea
    Chen, Mingjie
    Chidambaram, Shiva
    Keller, Timo
    Wen, Boya
    ACTA ARITHMETICA, 2023, 208 (01) : 15 - 49
  • [8] FAILURE OF THE HASSE PRINCIPLE FOR ATKIN-LEHNER QUOTIENTS OF SHIMURA CURVES OVER Q
    Rotger, Victor
    Skorobogatov, Alexei
    Yafaev, Andrei
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (02) : 463 - 476
  • [9] TWISTED MODULAR-FORMS AND ATKIN-LEHNER SYMMETRIES
    ALVAREZ, E
    OSORIO, MAR
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1989, 44 (01): : 89 - 96
  • [10] Ramanujan’s modular equations and Atkin-Lehner involutions
    Heng Huat Chan
    Mong Lung Lang
    Israel Journal of Mathematics, 1998, 103 : 1 - 16