Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization

被引:0
|
作者
Raja Marappan
Gopalakrishnan Sethumadhavan
机构
[1] SASTRA Deemed University,Department of Computer Applications, School of Computing
关键词
Approximation method; Combinatorial optimization; Graph coloring; NP-hard; Swarm optimization; Divide and conquer;
D O I
暂无
中图分类号
学科分类号
摘要
The graph coloring problem, an NP-hard combinatorial optimization problem, is required in some engineering applications. This research focuses on the requirement of designing a new particle swarm optimization model to minimize the search space and generations. This stochastic method is developed using divide and conquer with improved strategies to offset the problems in the well-known existing ways. The divide and conquer strategy splits the vertex set of graph G into two subsets, and then, the subsets are solved to reduce the search space. The advanced neighborhood search operator is applied to a particle for a fixed number of iterations to improve its position to obtain the best neighborhood. The modified turbulent strategy is designed to overcome the problem of getting a divergent solution. The iterative fitness assessment and walking one strategy are applied to identify the maximum conflicting vertices and assign a set of valid colors. The behavioral analysis of this stochastic search model reveals that premature convergence is primarily caused by the decrease in the velocity of particles in the search space that leads to a total implosion and, ultimately, fitness stagnation of the swarm. The lazy particles are driven out for exploring new search spaces to avoid premature convergence. The experimental results of this method have revealed that a better near-optimal solution is obtained for some of the critical benchmark graphs compared with the state-of-the-art techniques.
引用
收藏
页码:9695 / 9712
页数:17
相关论文
共 50 条
  • [11] Solving the Urban Transit Routing Problem using a particle swarm optimization based algorithm
    Kechagiopoulos, Panagiotis N.
    Beligiannis, Grigorios N.
    APPLIED SOFT COMPUTING, 2014, 21 : 654 - 676
  • [12] Divide- and conquer-based surveillance framework using robots, sensor nodes, and RFID tags
    Xiao, Yang
    Zhang, Yanping
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2011, 11 (07): : 964 - 979
  • [13] A hybrid algorithm using particle swarm optimization for solving transportation problem
    Gurwinder Singh
    Amarinder Singh
    Neural Computing and Applications, 2020, 32 : 11699 - 11716
  • [14] Solving effectively the school timetabling problem using particle swarm optimization
    Tassopoulos, Ioannis X.
    Beligiannis, Grigorios N.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 6029 - 6040
  • [15] Solving Unit Commitment problem using Hybrid Particle Swarm Optimization
    Ting, TO
    Rao, MVC
    Loo, CK
    Ngu, SS
    JOURNAL OF HEURISTICS, 2003, 9 (06) : 507 - 520
  • [16] Solving the orienteering problem using attractive and repulsive particle swarm optimization
    Dallard, Herby
    Lam, Sarah S.
    Kulturel-Konak, Sadan
    IRI 2007: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2007, : 12 - +
  • [17] A hybrid algorithm using particle swarm optimization for solving transportation problem
    Singh, Gurwinder
    Singh, Amarinder
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15): : 11699 - 11716
  • [18] Solving Unit Commitment Problem Using Hybrid Particle Swarm Optimization
    Tiew-On Ting
    M.V.C. Rao
    C.K. Loo
    S.S. Ngu
    Journal of Heuristics, 2003, 9 : 507 - 520
  • [19] On solving the double loading problem using a modified particle swarm optimization
    Tlili, Takwa
    Krichen, Saoussen
    THEORETICAL COMPUTER SCIENCE, 2015, 598 : 118 - 128
  • [20] Solving the Graph Coloring Problem Using Cuckoo Search
    Aranha, Claus
    Toda, Keita
    Kanoh, Hitoshi
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT I, 2017, 10385 : 552 - 560