Some Point Estimates and Confidence Regions for Multivariate Inter-laboratory Data Analysis

被引:0
|
作者
Jian Zhao
Thomas Mathew
机构
[1] University of Maryland Baltimore County,Department of Mathematics & Statistics
来源
Sankhya B | 2018年 / 80卷
关键词
Ellipsoidal region; heteroscedasticity; multivariate one-way random model; parametric bootstrap.; Primary 62H12; Secondary 62F25;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of analyzing multivariate data from inter-laboratory studies is considered when the data are modeled using the heteroscedastic multivariate one-way random effects model. The primary problem of interest is inference concerning the common mean vector, and a secondary problem of interest is inference concerning the inter-laboratory variance component. Under the usual multivariate normality assumption, this work investigates the point estimation of the inter-laboratory variance component, and the computation of a confidence region for the common mean vector. Noting that a full likelihood based analysis presents computational challenges, some computationally tractable solutions are presented, and illustrated with an example.
引用
收藏
页码:147 / 166
页数:19
相关论文
共 50 条
  • [32] Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration
    Goldberg, Tatiana
    Gordon, Gwyneth
    Izon, Gareth
    Archer, Corey
    Pearce, Christopher R.
    McManus, James
    Anbar, Ariel D.
    Rehkaemper, Mark
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2013, 28 (05) : 724 - 735
  • [33] Inter-Laboratory Comparison of Metabolite Measurements for Metabolomics Data Integration
    Izumi, Yoshihiro
    Matsuda, Fumio
    Hirayama, Akiyoshi
    Ikeda, Kazutaka
    Kita, Yoshihiro
    Horie, Kanta
    Saigusa, Daisuke
    Saito, Kosuke
    Sawada, Yuji
    Nakanishi, Hiroki
    Okahashi, Nobuyuki
    Takahashi, Masatomo
    Nakao, Motonao
    Hata, Kosuke
    Hoshi, Yutaro
    Morihara, Motohiko
    Tanabe, Kazuhiro
    Bamba, Takeshi
    Oda, Yoshiya
    METABOLITES, 2019, 9 (11)
  • [34] Point estimates and confidence regions for sequential trials involving selection
    Stallard, N
    Todd, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (02) : 402 - 419
  • [35] A simple methodology to analyze inter-laboratory data: A simulation study
    Jain, Ram B.
    CLINICA CHIMICA ACTA, 2009, 410 (1-2) : 79 - 84
  • [36] THE SALMONELLA MICROSOME ASSAY - SOME POSSIBLE CAUSES FOR INTER-LABORATORY VARIATIONS
    FRIEDERICH, U
    AESCHBACHER, HU
    SEILER, JP
    WURGLER, FE
    MUTATION RESEARCH, 1982, 103 (02): : 133 - 140
  • [37] Results of an inter-laboratory comparison of methods for quantitative clay analysis
    Ottner, F
    Gier, S
    Kuderna, M
    Schwaighofer, B
    APPLIED CLAY SCIENCE, 2000, 17 (5-6) : 223 - 243
  • [38] Inter-laboratory analysis of firmness and sensory texture of stored apples
    Zdunek, A.
    Cybulska, J.
    Konopacka, D.
    Rutkowski, K.
    INTERNATIONAL AGROPHYSICS, 2011, 25 (01) : 67 - 75
  • [39] INTER-LABORATORY VARIABILITY IN CHEMICAL-ANALYSIS OF LEAF SAMPLES
    LABASTIDE, JGA
    VANGOOR, CP
    PLANT AND SOIL, 1978, 49 (01) : 1 - 7
  • [40] Estimation and uncertainty analysis of dose response in an inter-laboratory experiment
    Toman, Blaza
    Roesslein, Matthias
    Elliott, John T.
    Petersen, Elijah J.
    METROLOGIA, 2016, 53 (01) : S40 - S45