Water-dispersible nanohydrogels of cross-linked polyacrylamide

被引:0
|
作者
Cándida A. Cisneros-Covarrubias
Miguel A. Corona-Rivera
Víctor M. Ovando-Medina
Hugo Martínez-Gutiérrez
Eduardo Mendizábal
Ricardo Manríquez-González
机构
[1] Universidad Autónoma de San Luis Potosí,Ingeniería Química, Coordinación Académica Región Altiplano (COARA)
[2] Instituto Politécnico Nacional-CNMN,Departamento de Madera, Celulosa y Papel
[3] CUCEI,Centro Universitario de Ciencias Exactas e Ingeniería, Departamento de Química
[4] Universidad de Guadalajara,undefined
[5] Universidad de Guadalajara,undefined
来源
关键词
Nanohydrogels; Cross-linked; Water-redispersible; Polyacrylamide; Microemulsion;
D O I
暂无
中图分类号
学科分类号
摘要
Stable water-dispersible nanohydrogels of cross-linked polyacrylamide (PAAm) were obtained by batch (BP) and semicontinuous (SP) processes through inverse microemulsion polymerization using N,N'-methylenebisacrylamide (NMBAM) as cross-linking agent and bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) as surfactant. The effects of initiator type as 2,2'-Azobis(2-amidinopropane) hydrochloride (V-50), potassium persulfate (KPS), ammonium persulfate (APS), and benzoyl peroxide (BPO) on kinetics, particle size, and morphology were studied. It was observed that under the studied conditions, it is possible to form the inverse microemulsions using lower surfactant concentrations than those typically reported for microemulsión polymerization of this monomer. Z-average particle size (Dpz) of final latexes were in the range of 51 to 79 nm for BP, those corresponding to SP were in the interval of 118 to 225 nm, while Dpz of water-dispersed nanohydrogels varied from 530 to 825 nm conserving their spherical morphology. Particle size distributions of both latexes and the water-dispersed nanohydrogels were monomodal. High monomer conversions and fast polymerization rates were observed in all cases, achieving monomer-starved conditions when using low monomer addition rate in SP process.
引用
收藏
页码:2395 / 2404
页数:9
相关论文
共 50 条
  • [21] Diffusion coefficients of sodium dodecyl sulfate in water swollen cross-linked polyacrylamide membranes
    Valente, AJM
    Burrows, HD
    Miguel, MG
    Lobo, VMM
    EUROPEAN POLYMER JOURNAL, 2002, 38 (11) : 2187 - 2196
  • [22] Water-dispersible adhesive raw materials
    Miller, RA
    Althen, GM
    1966 HOT MELT SYMPOSIUM, 1996, : 65 - 70
  • [23] Polypyrrole nanocomposite with water-dispersible graphene
    Jo, Woo-Geun
    Khan, Mashooq
    Tan, Loon-Seng
    Jeong, Ho-Shin
    Lee, Shin-Hee
    Park, Soo-Young
    MACROMOLECULAR RESEARCH, 2017, 25 (04) : 335 - 343
  • [24] POLYESTERAMIDE MODIFIED WATER-DISPERSIBLE RESINS
    SCHNEIDER, WJ
    GAST, LE
    JOURNAL OF COATINGS TECHNOLOGY, 1978, 50 (644): : 26 - 26
  • [25] Water-dispersible microparticles of polyunsaturated oils
    Chimpibul, Wichchulada
    Rengpipat, Sirirat
    Wanichwecharungruang, Supason
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2017, 52 (04): : 1057 - 1063
  • [26] Covalent Cross-Linking as a Strategy to Prepare Water-Dispersible Chitosan Nanogels
    Munana-Gonzalez, Sara
    Veloso-Fernandez, Antonio
    Ruiz-Rubio, Leire
    Perez-Alvarez, Leyre
    Vilas-Vilela, Jose Luis
    POLYMERS, 2023, 15 (02)
  • [27] Laboratory investigation of osmotic tensiometers filled with cross-linked polyacrylamide
    Liu, Hengshuo
    Hamdany, Abdul Halim
    Rahardjo, Harianto
    TRANSPORTATION GEOTECHNICS, 2024, 44
  • [28] MOLECULAR-SIEVE ELECTROPHORESIS IN CROSS-LINKED POLYACRYLAMIDE GELS
    HJERTEN, S
    JOURNAL OF CHROMATOGRAPHY, 1963, 11 (01): : 66 - &
  • [29] Investigation on the Stability of the Dispersion System of Cross-Linked Polyacrylamide Microspheres
    Dong, Zhaoxia
    Guo, Jinru
    Zhao, Qian
    Lin, Meiqin
    Lin, Yun
    Chen, Meihua
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2015, 36 (12) : 1786 - 1792
  • [30] Long-term water retention increases in degraded soils amended with cross-linked polyacrylamide
    Lentz, Rodrick D.
    AGRONOMY JOURNAL, 2020, 112 (04) : 2569 - 2580