Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type

被引:1
|
作者
Sibei Yang
Dachun Yang
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
来源
Collectanea Mathematica | 2019年 / 70卷
关键词
Musielak–Orlicz–Hardy space; Atom; Maximal function; Non-negative self-adjoint operator; Gaussian upper bound estimate; Space of homogeneous type; Strongly Lipschitz domain; Primary 42B25; Secondary 42B35; 46E30; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}$$\end{document} be a metric space with doubling measure and L be a non-negative self-adjoint operator on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathcal {X}})$$\end{document} whose heat kernels satisfy the Gaussian upper bound estimates. Assume that the growth function φ:X×[0,∞)→[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi :\ {\mathcal {X}}\times [0,\infty ) \rightarrow [0,\infty )$$\end{document} satisfies that φ(x,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,\cdot )$$\end{document} is an Orlicz function and φ(·,t)∈A∞(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\cdot ,t)\in {{\mathbb {A}}}_{\infty }({\mathcal {X}})$$\end{document} (the class of uniformly Muckenhoupt weights). Let Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} be the Musielak–Orlicz–Hardy space defined via the Lusin area function associated with the heat semigroup of L. In this article, the authors characterize the space Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} by means of atoms, non-tangential and radial maximal functions associated with L. In particular, when μ(X)<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ({\mathcal {X}})<\infty $$\end{document}, the local non-tangential and radial maximal function characterizations of Hφ,L(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,L}({\mathcal {X}})$$\end{document} are obtained. As applications, the authors obtain various maximal function and the atomic characterizations of the “geometric” Musielak–Orlicz–Hardy spaces Hφ,r(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,r}(\Omega )$$\end{document} and Hφ,z(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,z}(\Omega )$$\end{document} on the strongly Lipschitz domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} associated with second-order self-adjoint elliptic operators with the Dirichlet and the Neumann boundary conditions; even when φ(x,t):=t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,t):=t$$\end{document} for any x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in {\mathbb {R}}^n$$\end{document} and t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document}, the equivalent characterizations of Hφ,z(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\varphi ,\,z}(\Omega )$$\end{document} given in this article improve the known results via removing the assumption that Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is unbounded.
引用
收藏
页码:197 / 246
页数:49
相关论文
共 50 条
  • [21] Hardy Spaces Associated with Non-negative Self-adjoint Operators and Ball Quasi-Banach Function Spaces on Doubling Metric Measure Spaces and Their Applications
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024,
  • [22] Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates
    Hofmann, Steve
    Lu, Guozhen
    Mitrea, Dorina
    Mitrea, Marius
    Yan, Lixin
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 214 (1007) : 1 - +
  • [23] Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators
    Georgiadis, Athanasios G.
    Nielsen, Morten
    JOURNAL OF APPROXIMATION THEORY, 2018, 234 : 1 - 19
  • [24] The atomic decomposition of weighted Hardy spaces associated to self-adjoint operators on product spaces
    Liu, Suying
    Song, Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (01) : 92 - 115
  • [25] An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators
    Liu, Suying
    Song, Liang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (11) : 2709 - 2723
  • [26] LITTLEWOOD-PALEY gλ*-FUNCTION CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Yan, X.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (01): : 100 - 123
  • [27] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410
  • [28] Local Hardy Spaces with Variable Exponents Associated with Non-negative Self-Adjoint Operators Satisfying Gaussian Estimates
    Almeida, Victor
    Betancor, Jorge J.
    Dalmasso, Estefania
    Rodriguez-Mesa, Lourdes
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 3275 - 3330
  • [29] Continuous characterizations of inhomogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators
    Hong, Qing
    Hu, Guorong
    MANUSCRIPTA MATHEMATICA, 2023, 170 (1-2) : 243 - 281
  • [30] Continuous characterizations of inhomogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators
    Qing Hong
    Guorong Hu
    manuscripta mathematica, 2023, 170 : 243 - 281