Stochastic solutions of generalized time-fractional evolution equations

被引:0
|
作者
Christian Bender
Yana A. Butko
机构
[1] Saarland University,Faculty of Mathematics and Computer Science
[2] Technical University of Braunschweig,Institute of Mathematical Stochastics
来源
Fractional Calculus and Applied Analysis | 2022年 / 25卷
关键词
Time-fractional evolution equations (primary); Fractional calculus; Randomly scaled Gaussian processes; Randomly scaled Lévy processes; Randomely slowed-down / speeded-up Lévy processes; Linear fractional Lévy motion; Generalized grey Brownian motion; Inverse subordinators; Marichev-Saigo-Maeda operators of fractional calculus; Appell functions; Three parameter Mittag-Leffler function; Feynman-Kac formulae; Anomalous diffusion; 26A33 (primary); 33E12; 34A08; 34K37; 35R11; 60G22;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a general class of integro-differential evolution equations which includes the governing equation of the generalized grey Brownian motion and the time- and space-fractional heat equation. We present a general relation between the parameters of the equation and the distribution of the underlying stochastic processes, as well as discuss different classes of processes providing stochastic solutions of these equations. For a subclass of evolution equations, containing Marichev-Saigo-Maeda time-fractional operators, we determine the parameters of the corresponding processes explicitly. Moreover, we explain how self-similar stochastic solutions with stationary increments can be obtained via linear fractional Lévy motion for suitable pseudo-differential operators in space.
引用
收藏
页码:488 / 519
页数:31
相关论文
共 50 条
  • [21] Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations
    Christian Bender
    Marie Bormann
    Yana A. Butko
    Fractional Calculus and Applied Analysis, 2022, 25 : 1818 - 1836
  • [22] Existence and regularity of solutions to time-fractional diffusion equations
    Mu, Jia
    Ahmad, Bashir
    Huang, Shuibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 985 - 996
  • [23] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [24] ABSTRACT TIME-FRACTIONAL EQUATIONS: EXISTENCE AND GROWTH OF SOLUTIONS
    Kostic, Marko
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (02) : 301 - 316
  • [25] Approximate solutions of linear time-fractional differential equations
    Oderinu, Razaq Adekola
    Owolabi, Johnson Adekunle
    Taiwo, Musilimu
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 29 (01): : 60 - 72
  • [26] Abstract time-fractional equations: Existence and growth of solutions
    Marko Kostić
    Fractional Calculus and Applied Analysis, 2011, 14 : 301 - 316
  • [27] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [28] On the invariant solutions of space/time-fractional diffusion equations
    Fariba Bahrami
    Ramin Najafi
    Mir Sajjad Hashemi
    Indian Journal of Physics, 2017, 91 : 1571 - 1579
  • [29] Exact solutions for some time-fractional evolution equations using Lie group theory
    Bira, Bibekananda
    Sekhar, Tungala Raja
    Zeidan, Dia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) : 6717 - 6725
  • [30] Classical and generalized solutions of fractional stochastic differential equations
    S. V. Lototsky
    B. L. Rozovsky
    Stochastics and Partial Differential Equations: Analysis and Computations, 2020, 8 : 761 - 786