Approximation by Kantorovich Type q-Bernstein-Stancu Operators

被引:0
|
作者
M. Mursaleen
Khursheed J. Ansari
Asif Khan
机构
[1] Aligarh Muslim University,Department of Mathematics
来源
关键词
-Bernstein-Stancu operators; Rate of convergence; Modulus of continuity; Voronovskaja type theorem; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a Kantorovich type generalization of q-Bernstein-Stancu operators. We study the convergence of the introduced operators and also obtain the rate of convergence by these operators in terms of the modulus of continuity. Further, we study local approximation property and Voronovskaja type theorem for the said operators. We show comparisons and some illustrative graphics for the convergence of operators to a certain function.
引用
收藏
页码:85 / 107
页数:22
相关论文
共 50 条
  • [31] Approximation by Bivariate (p, q)-Bernstein–Kantorovich Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 655 - 662
  • [32] Approximation Theorems for q-Bernstein-Kantorovich Operators
    Mahmudov, N. I.
    Sabancigil, P.
    FILOMAT, 2013, 27 (04) : 721 - 730
  • [33] Approximation by modified Kantorovich–Stancu operators
    Adonia-Augustina Opriş
    Journal of Inequalities and Applications, 2018
  • [34] Approximation by Stancu-Chlodowsky type λ-Bernstein operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 97 - 110
  • [35] Statistical approximation properties of Stancu type λ-Bernstein operators
    Wang, Peng-Hui
    Cai, Qing-Bo
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 178 - 182
  • [36] Bivariate α,q-Bernstein-Kantorovich Operators and GBS Operators of Bivariate α,q-Bernstein-Kantorovich Type
    Cai, Qing-Bo
    Cheng, Wen-Tao
    Cekim, Bayram
    MATHEMATICS, 2019, 7 (12)
  • [37] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Ruchi Chauhan
    Nurhayat Ispir
    PN Agrawal
    Journal of Inequalities and Applications, 2017
  • [38] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [39] Chlodowsky type (λ, q)-Bernstein-Stancu operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 75 - 101
  • [40] Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α
    Mohiuddine, S. A. -
    Ozger, Faruk
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)