Discrete Quantum Scattering Theory

被引:0
|
作者
V. I. Kukulin
O. A. Rubtsova
机构
[1] Moscow State University,Skobeltsyn Institute of Nuclear Physics
来源
关键词
quantum scattering theory; wave packets; Green's function; wave operator; -matrix; discretization of continuum;
D O I
暂无
中图分类号
学科分类号
摘要
We formulate quantum scattering theory in terms of a discrete L2-basis of eigen differentials. Using projection operators in the Hilbert space, we develop a universal method for constructing finite-dimensional analogues of the basic operators of the scattering theory: S- and T-matrices, resolvent operators, and Möller wave operators as well as the analogues of resolvent identities and the Lippmann–Schwinger equations for the T-matrix. The developed general formalism of the discrete scattering theory results in a very simple calculation scheme for a broad class of interaction operators.
引用
收藏
页码:404 / 426
页数:22
相关论文
共 50 条
  • [41] Mathematical Scattering Theory in Quantum Waveguides
    B. A. Plamenevskii
    A. S. Poretskii
    O. V. Sarafanov
    [J]. Doklady Physics, 2019, 64 : 430 - 433
  • [42] Quantum scattering theory on graphs with tails
    Varbanov, Martin
    Brun, Todd A.
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [43] CONTRIBUTION TO THE QUANTUM THEORY OF LIGHT SCATTERING
    VANKAMPEN, NG
    [J]. MATEMATISK-FYSISKE MEDDELELSER KONGELIGE DANSKE VIDENSKABERNES SELSKAB, 1951, 26 (15): : 1 - 77
  • [44] Scattering matrix in quantum field theory
    Khokhlov I.A.
    [J]. Russian Physics Journal, 2001, 44 (8) : 827 - 836
  • [45] DEMOCRITEAN PHENOMENOLOGY FOR QUANTUM SCATTERING THEORY
    NOYES, HP
    [J]. FOUNDATIONS OF PHYSICS, 1976, 6 (01) : 83 - 100
  • [46] INVERSE PROBLEM IN QUANTUM THEORY OF SCATTERING
    FADDEYEV, LD
    SECKLER, B
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) : 72 - &
  • [47] Quantum scattering theory on the momentum lattice
    Rubtsova, O. A.
    Pomerantsev, V. N.
    Kukulin, V. I.
    [J]. PHYSICAL REVIEW C, 2009, 79 (06):
  • [48] On a theory of resonance in quantum mechanical scattering
    Fernández, C
    Sinha, KB
    [J]. STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (ANESTOC '98), 2000, : 89 - 95
  • [49] THE DISCRETE VARIABLE FINITE BASIS APPROACH TO QUANTUM SCATTERING
    LILL, JV
    PARKER, GA
    LIGHT, JC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (02): : 900 - 910
  • [50] A discrete, unitary, causal theory of quantum gravity
    Wall, Aron C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (11)