Convexity in Topological Affine Planes

被引:0
|
作者
Raghavan Dhandapani
Jacob E. Goodman
Andreas Holmsen
Richard Pollack
Shakhar Smorodinsky
机构
[1] Courant Institute,
[2] NYU,undefined
[3] 251 Mercer St.,undefined
[4] Department of Mathematics,undefined
[5] City College,undefined
[6] CUNY,undefined
[7] Department of Mathematics,undefined
[8] University of Bergen,undefined
来源
关键词
Discrete Comput Geom; Euclidean Plane; Separation Theorem; Antipodal Point; Pseudoline Arrangement;
D O I
暂无
中图分类号
学科分类号
摘要
We extend to topological affine planes the standard theorems of convexity, among them the separation theorem, the anti-exchange theorem, Radon's, Helly's, Caratheodory's, and Kirchberger's theorems, and the Minkowski theorem on extreme points. In a few cases the proofs are obtained by adapting proofs of the original results in the Euclidean plane; in others it is necessary to devise new proofs that are valid in the more general setting considered here.
引用
收藏
页码:243 / 257
页数:14
相关论文
共 50 条
  • [41] Area functions on affine planes
    Hahl, Hermann
    Weber, Benjamin
    JOURNAL OF GEOMETRY, 2016, 107 (02) : 483 - 507
  • [42] MORPHISMS OF AFFINE HJELMSLEV PLANES
    LORIMER, JW
    LANE, ND
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 56 (06): : 880 - 885
  • [43] COLLINEATIONS OF AFFINE MOULTON PLANES
    PIERCE, WA
    CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (01): : 46 - &
  • [44] Strong Convexity of Affine Phase Retrieval
    Huang, Meng
    Xu, Zhiqiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1301 - 1315
  • [45] ARRANGEMENTS AND TOPOLOGICAL PLANES
    GOODMAN, JE
    POLLACK, R
    WENGER, R
    ZAMFIRESCU, T
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (09): : 866 - 878
  • [46] On the metric dimension of affine planes, biaffine planes and generalized quadrangles
    Bartoli, Daniele
    Heger, Tamas
    Kiss, Gyorgy
    Takats, Marcella
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 72 : 226 - 248
  • [47] Sharp homogeneity in affine planes, and in some affine generalized polygons
    Grundhöfer, T
    Van Maldeghem, H
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2004, 74 (1): : 163 - 174
  • [48] TOPOLOGICAL CONVEXITY IN COMPLEX SURFACES
    Gompf, Robert E.
    ASIAN JOURNAL OF MATHEMATICS, 2022, 26 (05) : 709 - 736
  • [49] Convexity in topological betweenness structures
    Anderson, Daron
    Bankston, Paul
    McCluskey, Aisling
    TOPOLOGY AND ITS APPLICATIONS, 2021, 304
  • [50] CONVEXITY ON A TOPOLOGICAL-SPACE
    KOMIYA, H
    FUNDAMENTA MATHEMATICAE, 1981, 111 (02) : 107 - 113