A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications

被引:0
|
作者
Lai-Jiu Lin
Wataru Takahashi
机构
[1] National Changhua University of Education,Department of Mathematics
[2] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
来源
Positivity | 2012年 / 16卷
关键词
Equilibrium problem; Fixed point; Inverse-strongly monotone mapping; Hierarchical variational inequality problems; Iteration procedure; Maximal monotone operator; Resolvent; Strict pseudo-contraction; 47H05; 47H10; 58E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma}}$$\end{document}-strongly monotone and L-Lipschitzian continuous operator with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma} >0 }$$\end{document} and L > 0. Take \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \gamma \in \mathbb R}$$\end{document} as follows:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$\end{document}In this paper, under the assumption \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}$$\end{document}, we prove a strong convergence theorem for finding a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z_0\in (A+B)^{-1}0\cap F^{-1}0}$$\end{document} which is a unique solution of the hierarchical variational inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$\end{document}Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.
引用
下载
收藏
页码:429 / 453
页数:24
相关论文
共 50 条
  • [31] Iterative methods for finding the minimum-norm solution of the standard monotone variational inequality problems with applications in Hilbert spaces
    Zhou, Yu
    Zhou, Haiyun
    Wang, Peiyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [32] Iterative methods for finding the minimum-norm solution of the standard monotone variational inequality problems with applications in Hilbert spaces
    Yu Zhou
    Haiyun Zhou
    Peiyuan Wang
    Journal of Inequalities and Applications, 2015
  • [33] A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces
    Qin, Xiaolong
    Shang, Meijuan
    Su, Yongfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3897 - 3909
  • [34] A General Iterative Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Meijuan Shang
    Yongfu Su
    Xiaolong Qin
    Fixed Point Theory and Applications, 2007
  • [35] A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces
    Plubtieng, Somyot
    Punpaeng, Rattanaporn
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) : 455 - 469
  • [36] A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces
    Shang, Meijuan
    Su, Yongfu
    Qin, Xiaolong
    FIXED POINT THEORY AND APPLICATIONS, 2007, 2007 (1)
  • [37] Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces
    Lu-Chuan Ceng
    Qamrul Hasan Ansari
    Jen-Chih Yao
    Journal of Optimization Theory and Applications, 2011, 151 : 489 - 512
  • [38] Iterative Methods for Triple Hierarchical Variational Inequalities in Hilbert Spaces
    Ceng, Lu-Chuan
    Ansari, Qamrul Hasan
    Yao, Jen-Chih
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (03) : 489 - 512
  • [39] Convergence Theorem for Variational Inequality in Hilbert Spaces with Applications
    Yu, Zenn-Tsun
    Chuang, Chih Sheng
    Lin, Lai-Jiu
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (08) : 865 - 893
  • [40] Iterative method with inertial for variational inequalities in Hilbert spaces
    Shehu, Yekini
    Cholamjiak, Prasit
    CALCOLO, 2019, 56 (01)