A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications

被引:0
|
作者
Lai-Jiu Lin
Wataru Takahashi
机构
[1] National Changhua University of Education,Department of Mathematics
[2] Tokyo Institute of Technology,Department of Mathematical and Computing Sciences
来源
Positivity | 2012年 / 16卷
关键词
Equilibrium problem; Fixed point; Inverse-strongly monotone mapping; Hierarchical variational inequality problems; Iteration procedure; Maximal monotone operator; Resolvent; Strict pseudo-contraction; 47H05; 47H10; 58E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let α > 0 and let A be an α-inverse-strongly monotone mapping of C into H and let B be a maximal monotone operator on H. Let F be a maximal monotone operator on H such that the domain of F is included in C. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let V be a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma}}$$\end{document}-strongly monotone and L-Lipschitzian continuous operator with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\gamma} >0 }$$\end{document} and L > 0. Take \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu, \gamma \in \mathbb R}$$\end{document} as follows:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \mu < \frac{2\overline{\gamma}}{L^2}, \quad 0 < \gamma < \frac{\overline{\gamma}-\frac{L^2 \mu}{2}}{k}.}$$\end{document}In this paper, under the assumption \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(A+B)^{-1}0 \cap F^{-1}0 \neq \emptyset}$$\end{document}, we prove a strong convergence theorem for finding a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${z_0\in (A+B)^{-1}0\cap F^{-1}0}$$\end{document} which is a unique solution of the hierarchical variational inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle (V-\gamma g)z_0, q-z_0 \rangle \geq 0, \quad \forall q\in (A+B)^{-1}0 \cap F^{-1}0.}$$\end{document}Using this result, we obtain new and well-known strong convergence theorems in a Hilbert space which are useful in nonlinear analysis and optimization.
引用
收藏
页码:429 / 453
页数:24
相关论文
共 50 条
  • [1] A general iterative method for hierarchical variational inequality problems in Hilbert spaces and applications
    Lin, Lai-Jiu
    Takahashi, Wataru
    [J]. POSITIVITY, 2012, 16 (03) : 429 - 453
  • [2] Strong convergence of a new general iterative method for variational inequality problems in Hilbert spaces
    Yan-Lai Song
    Hui-Ying Hu
    Ya-Qin Wang
    Lu-Chuan Zeng
    Chang-Song Hu
    [J]. Fixed Point Theory and Applications, 2012
  • [3] Strong convergence of a new general iterative method for variational inequality problems in Hilbert spaces
    Song, Yan-Lai
    Hu, Hui-Ying
    Wang, Ya-Qin
    Zeng, Lu-Chuan
    Hu, Chang-Song
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [4] Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces
    Qin, Xiaolong
    Shang, Meijuan
    Zhou, Haiyun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 242 - 253
  • [5] Regularization and iterative method for general variational inequality problem in hilbert spaces
    Cho, Yeol J. E.
    Petrot, Narin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [6] Regularization and iterative method for general variational inequality problem in hilbert spaces
    Yeol JE Cho
    Narin Petrot
    [J]. Journal of Inequalities and Applications, 2011
  • [7] AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Qin, Xiaolong
    Shang, Meijuan
    Su, Yongfu
    [J]. MATEMATICKI VESNIK, 2008, 60 (02): : 107 - 120
  • [8] Iterative methods for solving variational inequality problems with a double-hierarchical structure in Hilbert spaces
    Liu, Liya
    Yao, Jen-Chih
    [J]. OPTIMIZATION, 2023, 72 (10) : 2433 - 2461
  • [9] HIERARCHICAL VARIATIONAL INCLUSION PROBLEMS IN HILBERT SPACES WITH APPLICATIONS
    Chang, Shih-sen
    Cho, Yeol Je
    Kim, Jong Kyu
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (03) : 503 - 513
  • [10] A General Iterative Method for Variational Inequality Problems, Mixed Equilibrium Problems, and Fixed Point Problems of Strictly Pseudocontractive Mappings in Hilbert Spaces
    Rattanaporn Wangkeeree
    Rabian Wangkeeree
    [J]. Fixed Point Theory and Applications, 2009