Relating the Frobenius and Morita-Frobenius numbers of blocks of finite groups

被引:0
|
作者
Matthias Klupsch
机构
[1] Lehrstuhl B für Mathematik,
来源
Archiv der Mathematik | 2017年 / 108卷
关键词
Modular representation theory; Donovan’s conjecture; 20C20;
D O I
暂无
中图分类号
学科分类号
摘要
Donovan’s conjecture states that there exist only finitely many Morita equivalence classes of p-blocks with a given defect. This conjecture was shown by Radha Kessar to be equivalent to two other conjectures, one of which is that the basic algebras of p-blocks with a given defect can all be defined over a single finite field. We shall show that this latter conjecture is equivalent to the seemingly stronger statement that all p-blocks with a given defect can be defined over a single finite field.
引用
收藏
页码:539 / 543
页数:4
相关论文
共 50 条
  • [21] On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group
    Aleeva, MR
    MATHEMATICAL NOTES, 2003, 73 (3-4) : 299 - 313
  • [22] Families of solvable Frobenius subgroups in finite groups
    Lescot, P
    NAGOYA MATHEMATICAL JOURNAL, 2002, 165 : 117 - 121
  • [23] On Finite Simple Groups with the Set of Element Orders as in a Frobenius Group or a Double Frobenius Group
    M. R. Aleeva
    Mathematical Notes, 2003, 73 : 299 - 313
  • [24] Bounding Cohomology for Finite Groups and Frobenius Kernels
    Christopher P. Bendel
    Daniel K. Nakano
    Brian J. Parshall
    Cornelius Pillen
    Leonard L. Scott
    David Stewart
    Algebras and Representation Theory, 2015, 18 : 739 - 760
  • [25] Bounding Cohomology for Finite Groups and Frobenius Kernels
    Bendel, Christopher P.
    Nakano, Daniel K.
    Parshall, Brian J.
    Pillen, Cornelius
    Scott, Leonard L.
    Stewart, David
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (03) : 739 - 760
  • [26] COHERENCE IN FINITE-GROUPS WITH A FROBENIUS SUBGROUP
    SIBLEY, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A589 - A589
  • [27] On Frobenius graphs of diameter 3 for finite groups
    Breuer, T.
    Hethelyi, L.
    Horvath, E.
    Kuelshammer, B.
    JOURNAL OF ALGEBRA, 2025, 666 : 507 - 529
  • [28] RESOLVABLE MENDELSOHN DESIGNS AND FINITE FROBENIUS GROUPS
    Hsu, D. F.
    Zhou, Sanming
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (01) : 1 - 13
  • [29] On Frobenius groups
    V. V. Bludov
    Siberian Mathematical Journal, 1997, 38 : 1054 - 1056
  • [30] ON FINITE GROUPS WHICH CONTAIN A FROBENIUS SUBGROUP
    HERZOG, M
    JOURNAL OF ALGEBRA, 1967, 6 (02) : 192 - &