Relating the Frobenius and Morita-Frobenius numbers of blocks of finite groups

被引:0
|
作者
Matthias Klupsch
机构
[1] Lehrstuhl B für Mathematik,
来源
Archiv der Mathematik | 2017年 / 108卷
关键词
Modular representation theory; Donovan’s conjecture; 20C20;
D O I
暂无
中图分类号
学科分类号
摘要
Donovan’s conjecture states that there exist only finitely many Morita equivalence classes of p-blocks with a given defect. This conjecture was shown by Radha Kessar to be equivalent to two other conjectures, one of which is that the basic algebras of p-blocks with a given defect can all be defined over a single finite field. We shall show that this latter conjecture is equivalent to the seemingly stronger statement that all p-blocks with a given defect can be defined over a single finite field.
引用
收藏
页码:539 / 543
页数:4
相关论文
共 50 条
  • [1] Relating the Frobenius and Morita-Frobenius numbers of blocks of finite groups
    Klupsch, Matthias
    ARCHIV DER MATHEMATIK, 2017, 108 (06) : 539 - 543
  • [2] On the Morita Frobenius numbers of blocks of finite reductive groups
    Farrell, Niamh
    JOURNAL OF ALGEBRA, 2017, 471 : 299 - 318
  • [3] Arbitrarily large Morita Frobenius numbers
    Eisele, Florian
    Livesey, Michael
    ALGEBRA & NUMBER THEORY, 2022, 16 (08) : 1889 - 1904
  • [4] On the Frobenius numbers of symmetric groups
    Takegahara, Y
    JOURNAL OF ALGEBRA, 1999, 221 (02) : 551 - 561
  • [5] Arbitrarily large O-Morita Frobenius numbers
    Livesey, Michael
    JOURNAL OF ALGEBRA, 2021, 588 : 189 - 199
  • [6] Finite Groups Close to Frobenius Groups
    X. Wei
    A. Kh. Zhurtov
    D. V. Lytkina
    V. D. Mazurov
    Siberian Mathematical Journal, 2019, 60 : 805 - 809
  • [7] Finite Groups Close to Frobenius Groups
    Wei, X.
    Zhurtov, A. Kh.
    Lytkina, D. V.
    Mazurov, V. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (05) : 805 - 809
  • [8] Groups Saturated with Finite Frobenius Groups
    A. I. Sozutov
    Mathematical Notes, 2021, 109 : 270 - 279
  • [9] Groups Saturated with Finite Frobenius Groups
    Sozutov, A. I.
    MATHEMATICAL NOTES, 2021, 109 (1-2) : 270 - 279
  • [10] Relation between Frobenius and 2-Frobenius groups with order components of finite groups
    Darafsheh M.R.
    Karamzadeh N.S.
    Moghaddamfar A.R.
    Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 437 - 450