Isometric embeddings into Heisenberg groups

被引:0
|
作者
Zoltán M. Balogh
Katrin Fässler
Hernando Sobrino
机构
[1] University of Bern,Department of Mathematics and Statistics
[2] University of Fribourg,Department of Mathematics
来源
Geometriae Dedicata | 2018年 / 195卷
关键词
Heisenberg group; Isometric embeddings; Homogeneous norms; 30L05; 22E25; 54E40; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
We study isometric embeddings of a Euclidean space or a Heisenberg group into a higher dimensional Heisenberg group, where both the source and target space are equipped with an arbitrary left-invariant homogeneous distance that is not necessarily sub-Riemannian. We show that if all infinite geodesics in the target are straight lines, then such an embedding must be a homogeneous homomorphism. We discuss a necessary and certain sufficient conditions for the target space to have this ‘geodesic linearity property’, and we provide various examples.
引用
收藏
页码:163 / 192
页数:29
相关论文
共 50 条