On quasi-isometric embeddings of lamplighter groups

被引:1
|
作者
Inamdar, S. P. [1 ]
Naolekar, Aniruddha C. [1 ]
机构
[1] Indian Stat Inst, Dept Theoret Stat & Math, Bangalore Ctr, Bangalore 560059, Karnataka, India
关键词
Geometric group theory; Lamplighter groups;
D O I
10.1090/S0002-9939-07-08970-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We denote by Gamma(G) the Lamplighter group of a finite group G. In this article, we show that if G and H are two finite groups with at least two elements, then there exists a quasi-isometric embedding from Gamma(G) to Gamma(H). We also prove that the quasi-isometry group QI(Gamma(G)) of Gamma(G) contains all finite groups. We then show that the group of automorphisms of Gamma(Zn) has infinite index in QI(Gamma(Zn)).
引用
收藏
页码:3789 / 3794
页数:6
相关论文
共 50 条
  • [1] Quasi-isometric embeddings into diffeomorphism groups
    Brandenbursky, Michael
    Kedra, Jarek
    GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (03) : 523 - 534
  • [2] Bilipschitz versus quasi-isometric equivalence for higher rank lamplighter groups
    Dymarz, Tullia
    Peng, Irine
    Taback, Jennifer
    NEW YORK JOURNAL OF MATHEMATICS, 2015, 21 : 129 - 150
  • [3] Length and area functions on groups and quasi-isometric Higman embeddings
    Olshanskii, AY
    Sapir, MV
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2001, 11 (02) : 137 - 170
  • [4] Quasi-isometric embeddings of symmetric spaces
    Fisher, David
    Whyte, Kevin
    GEOMETRY & TOPOLOGY, 2018, 22 (05) : 3049 - 3082
  • [5] QUASI-ISOMETRIC EMBEDDINGS INAPPROXIMABLE BY ANOSOV REPRESENTATIONS
    Tsouvalas, Konstantinos
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (05) : 2497 - 2514
  • [6] Quasi-isometric diversity of marked groups
    Minasyan, A.
    Osin, D.
    Witzel, S.
    JOURNAL OF TOPOLOGY, 2021, 14 (02) : 488 - 503
  • [7] Groups quasi-isometric to symmetric spaces
    Kleiner, B
    Leeb, B
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (02) : 239 - 260
  • [8] A QUASI-ISOMETRIC EMBEDDING THEOREM FOR GROUPS
    Olshanskii, Alexander Yu
    Osin, Denis V.
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (09) : 1621 - 1648
  • [9] Commensurability of groups quasi-isometric to RAAGs
    Jingyin Huang
    Inventiones mathematicae, 2018, 213 : 1179 - 1247
  • [10] COMMABILITY OF GROUPS QUASI-ISOMETRIC TO TREES
    Carette, Mathieu
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (04) : 1365 - 1398