Stability study of a model for the Klein–Gordon equation in Kerr space-time

被引:0
|
作者
Horst Reinhard Beyer
Miguel Alcubierre
Miguel Megevand
Juan Carlos Degollado
机构
[1] Instituto Tecnológico Superior de Uruapan,Theoretical Astrophysics, IAAT
[2] Eberhard Karls University of Tübingen,Instituto de Ciencias Nucleares
[3] Universidad Nacional Autónoma de México,Instituto de Astronomía
[4] Universidad Nacional Autónoma de México,undefined
来源
关键词
Kerr metric; Stability; Klein–Gordon equation; Kerr background; Massive field; Instability;
D O I
暂无
中图分类号
学科分类号
摘要
The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein–Gordon equation, describing the propagation of a scalar field of mass \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} in the background of a rotating black hole. Rigorous results prove the stability of the reduced, by separation in the azimuth angle in Boyer–Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} extremely close to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}. Among others, the paper derives a model problem for the equation which supports the instability of the field down to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a/M \approx 0.97$$\end{document}.
引用
收藏
页码:203 / 227
页数:24
相关论文
共 50 条
  • [1] Stability study of a model for the Klein-Gordon equation in Kerr space-time
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    Carlos Degollado, Juan
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (01) : 203 - 227
  • [2] STABILITY STUDY OF A MODEL FOR THE KLEIN-GORDON EQUATION IN KERR SPACE-TIME II
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 115 - 143
  • [3] Klein-Gordon equation in curved space-time
    Lehn, R. D.
    Chabysheva, S. S.
    Hiller, J. R.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (04)
  • [4] Space-time spectral collocation method for Klein-Gordon equation
    Zhang, Ping
    Li, Te
    Zhang, Yuan-Hao
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [5] Analytical approach for space-time fractional Klein-Gordon equation
    Unsal, Omer
    Guner, Ozkan
    Bekir, Ahmet
    [J]. OPTIK, 2017, 135 : 337 - 345
  • [6] Stabilization of space-time statistical solutions of the Klein-Gordon equation
    Dudnikova, TV
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1997, 5 (02) : 179 - 188
  • [7] SERIES SOLUTIONS FOR THE KLEIN-GORDON EQUATION IN SCHWARZSCHILD SPACE-TIME
    ELIZALDE, E
    [J]. PHYSICAL REVIEW D, 1987, 36 (04): : 1269 - 1272
  • [8] Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation
    Khaled A. Gepreel
    Mohamed S. Mohameda
    [J]. Chinese Physics B, 2013, 22 (01) : 33 - 38
  • [9] A space-time spectral method for solving the nonlinear Klein-Gordon equation
    Wu, Hua
    Gao, Qiyi
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 110 - 137
  • [10] KLEIN-GORDON EQUATION IN A KERR-NEWMAN BACKGROUND SPACE
    ROWAN, DJ
    STEPHENSON, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (01): : 15 - 23