Stability study of a model for the Klein-Gordon equation in Kerr space-time

被引:2
|
作者
Reinhard Beyer, Horst [1 ,2 ,3 ]
Alcubierre, Miguel [3 ]
Megevand, Miguel [3 ]
Carlos Degollado, Juan [3 ,4 ]
机构
[1] Inst Tecnol Super Uruapan, Uruapan, Michoacan, Mexico
[2] Univ Tubingen, IAAT, D-72076 Tubingen, Germany
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico
关键词
Kerr metric; Stability; Klein-Gordon equation; Kerr background; Massive field; Instability; ROTATING BLACK-HOLE; SCALAR FIELDS; PERTURBATIONS; INSTABILITY; DYNAMICS;
D O I
10.1007/s10714-012-1470-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field of mass in the background of a rotating black hole. Rigorous results prove the stability of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, field for sufficiently large masses. Some, but not all, numerical investigations find instability of the reduced field for rotational parameters extremely close to . Among others, the paper derives a model problem for the equation which supports the instability of the field down to a/M approximate to 0.97.
引用
收藏
页码:203 / 227
页数:25
相关论文
共 50 条
  • [1] STABILITY STUDY OF A MODEL FOR THE KLEIN-GORDON EQUATION IN KERR SPACE-TIME II
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 115 - 143
  • [2] Stability study of a model for the Klein–Gordon equation in Kerr space-time
    Horst Reinhard Beyer
    Miguel Alcubierre
    Miguel Megevand
    Juan Carlos Degollado
    [J]. General Relativity and Gravitation, 2013, 45 : 203 - 227
  • [3] Klein-Gordon equation in curved space-time
    Lehn, R. D.
    Chabysheva, S. S.
    Hiller, J. R.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2018, 39 (04)
  • [4] Space-time spectral collocation method for Klein-Gordon equation
    Zhang, Ping
    Li, Te
    Zhang, Yuan-Hao
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [5] Analytical approach for space-time fractional Klein-Gordon equation
    Unsal, Omer
    Guner, Ozkan
    Bekir, Ahmet
    [J]. OPTIK, 2017, 135 : 337 - 345
  • [6] Stabilization of space-time statistical solutions of the Klein-Gordon equation
    Dudnikova, TV
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1997, 5 (02) : 179 - 188
  • [7] SERIES SOLUTIONS FOR THE KLEIN-GORDON EQUATION IN SCHWARZSCHILD SPACE-TIME
    ELIZALDE, E
    [J]. PHYSICAL REVIEW D, 1987, 36 (04): : 1269 - 1272
  • [8] A space-time spectral method for solving the nonlinear Klein-Gordon equation
    Wu, Hua
    Gao, Qiyi
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 110 - 137
  • [9] KLEIN-GORDON EQUATION IN A KERR-NEWMAN BACKGROUND SPACE
    ROWAN, DJ
    STEPHENSON, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (01): : 15 - 23
  • [10] A SHARP BILINEAR ESTIMATE FOR THE KLEIN-GORDON EQUATION IN ARBITRARY SPACE-TIME DIMENSIONS
    Jeavons, Chris
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 137 - 156