Back-projection-based progressive growing generative adversarial network for single image super-resolution

被引:0
|
作者
Tingsong Ma
Wenhong Tian
机构
[1] University of Electronic Science and Technology of China,
来源
The Visual Computer | 2021年 / 37卷
关键词
Back-projection; Progressive growing; Generative adversarial networks; Single image super-resolution;
D O I
暂无
中图分类号
学科分类号
摘要
Recent advanced deep learning studies have shown the positive role of feedback mechanism in image super-resolution task. However, current feedback mechanism only calculates residual errors of images with the same resolution without considering the useful features that may be carried by different resolution features. In this paper, to explore the potential of feedback mechanism, we design a new network structure (progressive up- and downsampling back-projection units) to construct a generative adversarial network for single image super-resolution and use progressive growing methodologies to train it. Unlike previous feedback structure, we use progressively increasing scale factor to build up- and down-projection units, which aims to learn fruitful features across scales. This method allows us to get more meaningful information from early feature maps. Additionally, we train our network progressively; in the process of training, we start from single layer network structure and add new layers as the training goes on. By this mean, the training process can be greatly accelerated and stabilized. Experiments on benchmark dataset with the state-of-the-art methods show that our network achieves 0.01 dB, 0.11 dB, 0.13 dB and 0.4 dB better PSNR results than that of RDN+, MDSR, D-DBPN and EDSR on 8×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} enlargement, respectively, and also achieves favorable performance against the state-of-the-art methods on 2×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} and 4×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} enlargement.
引用
收藏
页码:925 / 938
页数:13
相关论文
共 50 条
  • [21] Hierarchical Back Projection Network for Image Super-Resolution
    Liu, Zhi-Song
    Wang, Li-Wen
    Li, Chu-Tak
    Siu, Wan-Chi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2041 - 2050
  • [22] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [23] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [24] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [25] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [26] Image Super-Resolution using a Improved Generative Adversarial Network
    Wang, Han
    Wu, Wei
    Su, Yang
    Duan, Yongsheng
    Wang, Pengze
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 312 - 315
  • [27] Generative adversarial image super-resolution network for multiple degradations
    Lin, Hong
    Fan, Jing
    Zhang, Yangyi
    Peng, Dewei
    IET IMAGE PROCESSING, 2020, 14 (17) : 4520 - 4527
  • [28] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364
  • [29] Super-Resolution Reconstruction of Underwater Image Based on Image Sequence Generative Adversarial Network
    Li, Li
    Fan, Zijia
    Zhao, Mingyang
    Wang, Xinlei
    Wang, Zhongyang
    Wang, Zhiqiong
    Guo, Longxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [30] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101