A machine learning pipeline for quantitative phenotype prediction from genotype data

被引:0
|
作者
Giorgio Guzzetta
Giuseppe Jurman
Cesare Furlanello
机构
[1] Fondazione Bruno Kessler,
[2] DISI,undefined
[3] University of Trento,undefined
来源
关键词
Monte Carlo Markov Chain; Support Vector Regression; Quantitative Phenotype; Regularize Little Square; Mean Cell Haemoglobin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A Fast Machine Learning Workflow for Rapid Phenotype Prediction from Whole Shotgun Metagenomes
    Carrieri, Anna Paola
    Rowe, Will P. M.
    Winn, Martyn
    Pyzer-Knapp, Edward O.
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 9434 - 9439
  • [42] COMPARISON OF MACHINE LEARNING MODELS FOR QUANTITATIVE RISK MODELLING OF PIPELINE SYSTEMS
    Bandstra, Daryl
    Rojas, Juan S.
    Fraser, Alex
    Shironishi, Mari
    [J]. PROCEEDINGS OF 2022 14TH INTERNATIONAL PIPELINE CONFERENCE, IPC2022, VOL 1, 2022,
  • [43] Allelic phenotype prediction of phenylketonuria based on the machine learning method
    Yang Fang
    Jinshuang Gao
    Yaqing Guo
    Xiaole Li
    Enwu Yuan
    Erfeng Yuan
    Liying Song
    Qianqian Shi
    Haiyang Yu
    Dehua Zhao
    Linlin Zhang
    [J]. Human Genomics, 17
  • [44] Phenotype based prediction of WES outcome using machine learning
    Dingemans, Alexander J. M.
    Hinne, Max
    Jansen, Sandra
    van Reeuwijk, Jeroen
    de Leeuw, Nicole
    Pfundt, Rolph
    van Bon, Bregje W.
    Vulto-van Silfhout, Anneke T.
    Kleefstra, Tjitske
    Koolen, David A.
    van Gerven, Marcel A. J.
    Vissers, Lisenka E. L. M.
    de Vries, Bert B. A.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 506 - 506
  • [45] Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations
    Bonet, David
    Levin, May
    Montserrat, Daniel Mas
    Ioannidis, Alexander G.
    [J]. BIOCOMPUTING 2024, PSB 2024, 2024, : 404 - 418
  • [46] Allelic phenotype prediction of phenylketonuria based on the machine learning method
    Fang, Yang
    Gao, Jinshuang
    Guo, Yaqing
    Li, Xiaole
    Yuan, Enwu
    Yuan, Erfeng
    Song, Liying
    Shi, Qianqian
    Yu, Haiyang
    Zhao, Dehua
    Zhang, Linlin
    [J]. HUMAN GENOMICS, 2023, 17 (01)
  • [47] Machine learning application for patient stratification and phenotype/genotype investigation in a rare disease
    Spiga, Ottavia
    Cicaloni, Vittoria
    Dimitri, Giovanna Maria
    Pettini, Francesco
    Braconi, Daniela
    Bernini, Andrea
    Santucci, Annalisa
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [48] Quantitative basis of machine learning models for genomic prediction
    Syrowatka, Christine
    Machnik, Nick
    Robinson, Matthew
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 290 - 290
  • [49] Machine Learning Prediction of Locomotion Intention from Walking and Gaze Data
    Bremer, Gianni
    Stein, Niklas
    Lappe, Markus
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2023, 17 (01) : 119 - 142
  • [50] Data-Centric Machine Learning Pipeline for Hardware Verification
    Shin, Hongsup
    [J]. 2022 IEEE 35TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (IEEE SOCC 2022), 2022, : 11 - 12