A machine learning pipeline for quantitative phenotype prediction from genotype data

被引:0
|
作者
Giorgio Guzzetta
Giuseppe Jurman
Cesare Furlanello
机构
[1] Fondazione Bruno Kessler,
[2] DISI,undefined
[3] University of Trento,undefined
来源
关键词
Monte Carlo Markov Chain; Support Vector Regression; Quantitative Phenotype; Regularize Little Square; Mean Cell Haemoglobin;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A machine learning pipeline for quantitative phenotype prediction from genotype data
    Guzzetta, Giorgio
    Jurman, Giuseppe
    Furlanello, Cesare
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [2] Plant Genotype to Phenotype Prediction Using Machine Learning
    Danilevicz, Monica F.
    Gill, Mitchell
    Anderson, Robyn
    Batley, Jacqueline
    Bennamoun, Mohammed
    Bayer, Philipp E.
    Edwards, David
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [3] Machine learning based disease prediction from genotype data
    Katsaouni, Nikoletta
    Tashkandi, Araek
    Wiese, Lena
    Schulz, Marcel H.
    [J]. BIOLOGICAL CHEMISTRY, 2021, 402 (08) : 871 - 885
  • [4] PREDICTION OF PHENOTYPE INFORMATION FROM GENOTYPE DATA
    Yosef, Nir
    Gramm, Jens
    Wang, Qian-Fei
    Noble, William S.
    Karp, Richard M.
    Sharan, Roded
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (02) : 99 - 114
  • [5] Machine learning for predicting phenotype from genotype and environment
    Guo, Tingting
    Li, Xianran
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2023, 79
  • [6] An Explainable Machine Learning Pipeline for Stroke Prediction on Imbalanced Data
    Kokkotis, Christos
    Giarmatzis, Georgios
    Giannakou, Erasmia
    Moustakidis, Serafeim
    Tsatalas, Themistoklis
    Tsiptsios, Dimitrios
    Vadikolias, Konstantinos
    Aggelousis, Nikolaos
    [J]. DIAGNOSTICS, 2022, 12 (10)
  • [7] Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data
    Grana, Manuel
    Silva, Moises
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (04)
  • [8] Data processing pipeline for cardiogenic shock prediction using machine learning
    Jajcay, Nikola
    Bezak, Branislav
    Segev, Amitai
    Matetzky, Shlomi
    Jankova, Jana
    Spartalis, Michael
    El Tahlawi, Mohammad
    Guerra, Federico
    Friebel, Julian
    Thevathasan, Tharusan
    Berta, Imrich
    Poelzl, Leo
    Naegele, Felix
    Pogran, Edita
    Cader, F. Aaysha
    Jarakovic, Milana
    Gollmann-Tepekoeylue, Can
    Kollarova, Marta
    Petrikova, Katarina
    Tica, Otilia
    Krychtiuk, Konstantin A.
    Tavazzi, Guido
    Skurk, Carsten
    Huber, Kurt
    Boehm, Allan
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [9] Research on the Construction and Realization of Data Pipeline in Machine Learning Regression Prediction
    Zhang, Hua
    Zheng, Guoxun
    Xu, Jun
    Yao, Xuekun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] Research on the Construction and Realization of Data Pipeline in Machine Learning Regression Prediction
    Zhang, Hua
    Zheng, Guoxun
    Xu, Jun
    Yao, Xuekun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022