Condensing Operators of Integral Type in Busemann Reflexive Convex Spaces

被引:0
|
作者
Moosa Gabeleh
Hans-Peter A. Künzi
机构
[1] Ayatollah Boroujerdi University,Department of Mathematics
[2] University of Cape Town,Department of Mathematics and Applied Mathematics
关键词
Best proximity point (pair); Cyclic (noncyclic); Optimum solution; System of differential equations; Primary 53C22; 47H09; Secondary 34A12;
D O I
暂无
中图分类号
学科分类号
摘要
Let (A, B) be a nonempty, closed and convex pair in a reflexive and Busemann convex space X, and (E,F)⊆(A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(E,F)\subseteq (A,B)$$\end{document} be a nonempty and proximinal pair in X such that dist(E,F)=dist(A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{dist}(E,F)=\mathrm{dist}(A,B)$$\end{document}. We prove that the pair (con¯(E),con¯(F))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\overline{\mathrm{con}}(E),\overline{\mathrm{con}}(F))$$\end{document} is also proximinal, where con¯(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{con}}(E)$$\end{document} denotes the closed convex hull of the set E. Moreover, we introduce a new notion of cyclic (noncyclic) mappings involving measure of noncompactness and obtain some new existence results of best proximity points (pairs). As an application of our main conclusions, we study the existence of an optimal solution for a system of integrodifferential equations under new sufficient conditions.
引用
收藏
页码:1971 / 1988
页数:17
相关论文
共 50 条