Pseudo-Riemannian weakly symmetric manifolds

被引:0
|
作者
Zhiqi Chen
Joseph A. Wolf
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] University of California,Department of Mathematics
来源
关键词
Weakly symmetric spaces; Pseudo-Riemannian manifolds; Weakly symmetric pseudo-Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
There is a well-developed theory of weakly symmetric Riemannian manifolds. Here it is shown that several results in the Riemannian case are also valid for weakly symmetric pseudo-Riemannian manifolds, but some require additional hypotheses. The topics discussed are homogeneity, geodesic completeness, the geodesic orbit property, weak symmetries, and the structure of the nilradical of the isometry group. Also, we give a number of examples of weakly symmetric pseudo-Riemannian manifolds, some mirroring the Riemannian case and some indicating the problems in extending Riemannian results to weakly symmetric pseudo-Riemannian spaces.
引用
收藏
页码:381 / 390
页数:9
相关论文
共 50 条
  • [31] Curvature measures of pseudo-Riemannian manifolds
    Bernig, Andreas
    Faifman, Dmitry
    Solanes, Gil
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (788): : 77 - 127
  • [32] ON MAXIMAL SUBMANIFOLDS IN PSEUDO-RIEMANNIAN MANIFOLDS
    SHEN, YB
    [J]. CHINESE SCIENCE BULLETIN, 1990, 35 (22): : 1932 - 1933
  • [33] PSEUDO-RIEMANNIAN SYMMETRIC-SPACES
    CAHEN, M
    PARKER, M
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 24 (229) : 1 - 108
  • [34] On the structure of pseudo-Riemannian symmetric spaces
    I. Kath
    M. Olbrich
    [J]. Transformation Groups, 2009, 14 : 847 - 885
  • [35] ON THE STRUCTURE OF PSEUDO-RIEMANNIAN SYMMETRIC SPACES
    Kath, I.
    Olbrich, M.
    [J]. TRANSFORMATION GROUPS, 2009, 14 (04) : 847 - 885
  • [36] On weakly symmetric Riemannian manifolds
    Shaikh, Absos Ali
    Jana, Sanjib Kumar
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (1-2): : 27 - 41
  • [37] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [38] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [39] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875
  • [40] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171