Coupled-channel treatment of 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{^7}}$$\end{document}Li(n,γ)8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{(n,\gamma )^8}}$$\end{document}Li in effective field theory

被引:0
|
作者
Renato Higa
Pradeepa Premarathna
Gautam Rupak
机构
[1] Instituto de Física,Department of Physics & Astronomy, and HPC ² Center for Computational Sciences
[2] Universidade de São Paulo,undefined
[3] Mississippi State University,undefined
关键词
D O I
10.1140/epja/s10050-021-00516-6
中图分类号
学科分类号
摘要
The E1 contribution to the capture reaction 7Li(n,γ)8Li\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7\mathrm {Li}(n,\gamma )^8\mathrm {Li}$$\end{document} is calculated at low energies. We employ a coupled-channel formalism to account for the 7Li⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7\mathrm {Li}^\star $$\end{document} excited core contribution. We develop a halo effective field theory power counting where capture in the spin S=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=2$$\end{document} channel is enhanced over the S=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1$$\end{document} channel. A next-to-leading order calculation is presented where the excited core contribution is shown to affect only the overall normalization of the cross section. The momentum dependence of the capture cross section, as a consequence, is the same in a theory with or without the excited 7Li⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7\mathrm {Li}^\star $$\end{document} degree of freedom at this order of the calculation. The kinematical signature of the 7Li⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7\mathrm {Li}^\star $$\end{document} core is negligible at momenta below 1 MeV and significant only beyond the 3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^+$$\end{document} resonance energy, though still compatible with a next-to-next-to-leading order correction. We compare our formalism with a previous halo effective field theory calculation [Zhang et al., Phys. Rev. C 89, 024613 (2014)] that also treated the 7Li⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^7\mathrm {Li}^\star $$\end{document} core as an explicit degree of freedom. Our formal expressions and analysis disagree with this earlier work in several aspects.
引用
收藏
相关论文
共 50 条