General fractional Sobolev space with variable exponent and applications to nonlocal problems

被引:0
|
作者
Elhoussine Azroul
Abdelmoujib Benkirane
Mohammed Shimi
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz
来源
关键词
Generalized fractional Sobolev spaces; Nonlocal and integro-differential operators; -Kirchhoff type problems; Mountain pass theorem; Minty–Browder theorem; 46E35; 35R11; 47G20; 45J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the fractional Sobolev spaces with variable exponents Ws,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}$$\end{document} to include the general fractional case WKs,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}_K$$\end{document}, where p is a variable exponent, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document} and K is a suitable kernel. We are concerned with some qualitative properties of the space WKs,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}_K$$\end{document} (completeness, reflexivity, separability, and density). Moreover, we prove a continuous and a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As applications, we discuss the existence of a nontrivial solution for a nonlocal p(x, .)-Kirchhoff type problem. Further, we establish the existence and uniqueness of a solution for a variational problem involving the integro-differential operator of elliptic type LKp(x,.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}^{p(x,.)}_K$$\end{document}.
引用
收藏
页码:1512 / 1540
页数:28
相关论文
共 50 条