General fractional Sobolev space with variable exponent and applications to nonlocal problems

被引:0
|
作者
Elhoussine Azroul
Abdelmoujib Benkirane
Mohammed Shimi
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory of Mathematical Analysis and Applications, Faculty of Sciences Dhar El Mahraz
来源
关键词
Generalized fractional Sobolev spaces; Nonlocal and integro-differential operators; -Kirchhoff type problems; Mountain pass theorem; Minty–Browder theorem; 46E35; 35R11; 47G20; 45J05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the fractional Sobolev spaces with variable exponents Ws,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}$$\end{document} to include the general fractional case WKs,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}_K$$\end{document}, where p is a variable exponent, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document} and K is a suitable kernel. We are concerned with some qualitative properties of the space WKs,p(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p(x,y)}_K$$\end{document} (completeness, reflexivity, separability, and density). Moreover, we prove a continuous and a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As applications, we discuss the existence of a nontrivial solution for a nonlocal p(x, .)-Kirchhoff type problem. Further, we establish the existence and uniqueness of a solution for a variational problem involving the integro-differential operator of elliptic type LKp(x,.)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}^{p(x,.)}_K$$\end{document}.
引用
收藏
页码:1512 / 1540
页数:28
相关论文
共 50 条
  • [1] General fractional Sobolev space with variable exponent and applications to nonlocal problems
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1512 - 1540
  • [2] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [3] NONLOCAL EIGENVALUE PROBLEMS IN VARIABLE EXPONENT SOBOLEV SPACES
    Benouhiba, Nawel
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2015,
  • [4] Existence results and bifurcation for nonlocal fractional problems with critical Sobolev exponent
    Li, Pan-Li
    Sun, Hong-Rui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1720 - 1731
  • [5] On a new fractional Sobolev space with variable exponent on complete manifolds
    Ahmed Aberqi
    Omar Benslimane
    Abdesslam Ouaziz
    Dus̆an D. Repovs̆
    Boundary Value Problems, 2022
  • [6] On a new fractional Sobolev space with variable exponent on complete manifolds
    Aberqi, Ahmed
    Benslimane, Omar
    Ouaziz, Abdesslam
    Repovs, Dusan D.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [7] On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems
    J. C. de Albuquerque
    L. R. S. de Assis
    M. L. M. Carvalho
    A. Salort
    The Journal of Geometric Analysis, 2023, 33
  • [8] Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff–Choquard Problem
    Sabri Bahrouni
    Hichem Ounaies
    Mediterranean Journal of Mathematics, 2021, 18
  • [9] Nonlocal characterizations of variable exponent Sobolev spaces
    Ferrari, Gianluca
    Squassina, Marco
    ASYMPTOTIC ANALYSIS, 2022, 127 (1-2) : 121 - 142
  • [10] On Fractional Musielak-Sobolev Spaces and Applications to Nonlocal Problems
    de Albuquerque, J. C.
    de Assis, L. R. S.
    Carvalho, M. L. M.
    Salort, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (04)