In this paper, we extend the fractional Sobolev spaces with variable exponents Ws,p(x,y)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W^{s,p(x,y)}$$\end{document} to include the general fractional case WKs,p(x,y)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W^{s,p(x,y)}_K$$\end{document}, where p is a variable exponent, s∈(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s\in (0,1)$$\end{document} and K is a suitable kernel. We are concerned with some qualitative properties of the space WKs,p(x,y)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W^{s,p(x,y)}_K$$\end{document} (completeness, reflexivity, separability, and density). Moreover, we prove a continuous and a compact embedding theorem of these spaces into variable exponent Lebesgue spaces. As applications, we discuss the existence of a nontrivial solution for a nonlocal p(x, .)-Kirchhoff type problem. Further, we establish the existence and uniqueness of a solution for a variational problem involving the integro-differential operator of elliptic type LKp(x,.)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {L}}^{p(x,.)}_K$$\end{document}.