A Multifidelity Monte Carlo Method for Realistic Computational Budgets

被引:0
|
作者
Anthony Gruber
Max Gunzburger
Lili Ju
Zhu Wang
机构
[1] Florida State University,Department of Scientific Computing
[2] University of Texas at Austin,Oden Institute for Computational Engineering and Sciences
[3] University of South Carolina,Department of Mathematics
来源
关键词
Multifidelity methods; Monte Carlo estimation; Uncertainty quantification; 62K05; 49M20;
D O I
暂无
中图分类号
学科分类号
摘要
A method for the multifidelity Monte Carlo (MFMC) estimation of statistical quantities is proposed which is applicable to computational budgets of any size. Based on a sequence of optimization problems each with a globally minimizing closed-form solution, this method extends the usability of a well known MFMC algorithm, recovering it when the computational budget is large enough. Theoretical results verify that the proposed approach is at least as optimal as its namesake and retains the benefits of multifidelity estimation with minimal assumptions on the budget or amount of available data, providing a notable reduction in variance over simple Monte Carlo estimation.
引用
收藏
相关论文
共 50 条
  • [1] A Multifidelity Monte Carlo Method for Realistic Computational Budgets
    Gruber, Anthony
    Gunzburger, Max
    Ju, Lili
    Wang, Zhu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)
  • [2] Convergence analysis of multifidelity Monte Carlo estimation
    Peherstorfer, Benjamin
    Gunzburger, Max
    Willcox, Karen
    [J]. NUMERISCHE MATHEMATIK, 2018, 139 (03) : 683 - 707
  • [3] Convergence analysis of multifidelity Monte Carlo estimation
    Benjamin Peherstorfer
    Max Gunzburger
    Karen Willcox
    [J]. Numerische Mathematik, 2018, 139 : 683 - 707
  • [4] OPTIMAL MODEL MANAGEMENT FOR MULTIFIDELITY MONTE CARLO ESTIMATION
    Peherstorfer, Benjamin
    Willcox, Karen
    Gunzburger, Max
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3163 - A3194
  • [5] Multifidelity Monte Carlo Estimation of Variance and Sensitivity Indices
    Qian, E.
    Peherstorfer, B.
    O'Malley, D.
    Vesselinov, V. V.
    Willcox, K.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 683 - 706
  • [6] Multifidelity adaptive sequential Monte Carlo for geophysical inversion
    Amaya, M.
    Meles, G.
    Marelli, S.
    Linde, N.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (02) : 788 - 804
  • [7] Extension of the spectroscopic Monte Carlo method to realistic effective interactions
    Puddu, G
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2005, 25 (02): : 165 - 169
  • [8] Extension of the spectroscopic Monte Carlo method to realistic effective interactions
    G. Puddu
    [J]. The European Physical Journal A - Hadrons and Nuclei, 2005, 25 : 165 - 169
  • [9] Uncertainty quantification of spent nuclear fuel with multifidelity Monte Carlo
    Alba, Arnau
    Adelmann, Andreas
    Rochman, Dimitri
    [J]. ANNALS OF NUCLEAR ENERGY, 2024, 211
  • [10] Quantum Monte Carlo diagonalization method for realistic shell model calculations
    Mizusaki, T
    Honma, M
    Otsuka, T
    [J]. ACTA PHYSICA POLONICA B, 1997, 28 (1-2): : 91 - 95