Convergence analysis of multifidelity Monte Carlo estimation

被引:16
|
作者
Peherstorfer, Benjamin [1 ,2 ]
Gunzburger, Max [3 ]
Willcox, Karen [4 ]
机构
[1] Univ Wisconsin Madison, Dept Mech Engn, Madison, WI 53706 USA
[2] Univ Wisconsin Madison, Wisconsin Inst Discovery, Madison, WI 53706 USA
[3] Florida State Univ, Dept Sci Comp, Dirac Sci Lib 400, Tallahassee, FL 32306 USA
[4] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
基金
美国能源部;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; MODEL-REDUCTION; ELLIPTIC PDES; MULTILEVEL;
D O I
10.1007/s00211-018-0945-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multifidelity Monte Carlo method provides a general framework for combining cheap low-fidelity approximations of an expensive high-fidelity model to accelerate the Monte Carlo estimation of statistics of the high-fidelity model output. In this work, we investigate the properties of multifidelity Monte Carlo estimation in the setting where a hierarchy of approximations can be constructed with known error and cost bounds. Our main result is a convergence analysis of multifidelity Monte Carlo estimation, for which we prove a bound on the costs of the multifidelity Monte Carlo estimator under assumptions on the error and cost bounds of the low-fidelity approximations. The assumptions that we make are typical in the setting of similar Monte Carlo techniques. Numerical experiments illustrate the derived bounds.
引用
收藏
页码:683 / 707
页数:25
相关论文
共 50 条
  • [1] Convergence analysis of multifidelity Monte Carlo estimation
    Benjamin Peherstorfer
    Max Gunzburger
    Karen Willcox
    [J]. Numerische Mathematik, 2018, 139 : 683 - 707
  • [2] OPTIMAL MODEL MANAGEMENT FOR MULTIFIDELITY MONTE CARLO ESTIMATION
    Peherstorfer, Benjamin
    Willcox, Karen
    Gunzburger, Max
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3163 - A3194
  • [3] Multifidelity Monte Carlo Estimation of Variance and Sensitivity Indices
    Qian, E.
    Peherstorfer, B.
    O'Malley, D.
    Vesselinov, V. V.
    Willcox, K.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 683 - 706
  • [4] Multifidelity Monte Carlo Estimation with Adaptive Low-Fidelity Models
    Peherstorfer, Benjamin
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 579 - 603
  • [5] Multifidelity Monte Carlo estimation for efficient uncertainty quantification in climate-related modeling
    Gruber, Anthony
    Gunzburger, Max
    Ju, Lili
    Lan, Rihui
    Wang, Zhu
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (04) : 1213 - 1229
  • [6] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    [J]. BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [7] Convergence estimation for stationary ensemble Monte Carlo simulations
    Jungemann, C
    Yamaguchi, S
    Goto, H
    [J]. SISPAD '97 - 1997 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 1997, : 209 - 212
  • [8] A Multifidelity Monte Carlo Method for Realistic Computational Budgets
    Anthony Gruber
    Max Gunzburger
    Lili Ju
    Zhu Wang
    [J]. Journal of Scientific Computing, 2023, 94
  • [9] A Multifidelity Monte Carlo Method for Realistic Computational Budgets
    Gruber, Anthony
    Gunzburger, Max
    Ju, Lili
    Wang, Zhu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)
  • [10] Multifidelity adaptive sequential Monte Carlo for geophysical inversion
    Amaya, M.
    Meles, G.
    Marelli, S.
    Linde, N.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (02) : 788 - 804