Improved constructions for quantum maximum distance separable codes

被引:0
|
作者
Jianfa Qian
Lina Zhang
机构
[1] Huizhou University,Department of Mathematics
来源
关键词
Quantum code; Cyclic code; MDS code;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we further improve the distance of the quantum maximum distance separable (MDS) codes of length n=q2+110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\frac{q^2+1}{10}$$\end{document}. This yields new families of quantum MDS codes. We also construct a family of new quantum MDS codes with parameters [[q2-13,q2-13-2d+2,d]]q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[[\frac{q^2-1}{3}, \frac{q^2-1}{3}-2d+2, d]]_{q}$$\end{document}, where q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, 2≤d≤q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le d\le \frac{q-1}{3}$$\end{document} if 3∣(q+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid (q+2)$$\end{document}, and 2≤d≤2q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le d\le \frac{2q-1}{3}$$\end{document} if 3∣(q+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid (q+1)$$\end{document}. Compared with the known quantum MDS codes, these quantum MDS codes have much larger minimum distance.
引用
收藏
相关论文
共 50 条
  • [21] Maximum distance separable codes and arcs in projective spaces
    Alderson, T. L.
    Bruen, A. A.
    Silverman, R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (06) : 1101 - 1117
  • [22] Maximum Distance Separable Symbol-Pair Codes
    Chee, Yeow Meng
    Kiah, Han Mao
    Wang, Chengmin
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [23] Maximum Distance Separable Codes in the ρ Metric over Arbitrary Alphabets
    Steven T. Dougherty
    Maxim M. Skriganov
    [J]. Journal of Algebraic Combinatorics, 2002, 16 : 71 - 81
  • [24] Maximum Distance Separable Array Codes Allowing Partial Collaboration
    Zhang, Yuejia
    Liu, Shiqiu
    Chen, Li
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1612 - 1615
  • [25] Maximum distance separable codes in the ρ metric over arbitrary alphabets
    Dougherty, Steven T.
    Skriganov, Maxim M.
    [J]. 1600, Kluwer Academic Publishers (16):
  • [26] Maximum Distance Separable 2D Convolutional Codes
    Climent, Joan-Josep
    Napp, Diego
    Perea, Carmen
    Pinto, Raquel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 669 - 680
  • [27] Maximum distance separable codes in the ρ metric over arbitrary alphabets
    Dougherty, ST
    Skriganov, MM
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2002, 16 (01) : 71 - 81
  • [28] Arbitrary rate maximum-distance separable wavelet codes
    Fekri, F
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 2253 - 2256
  • [29] Flag codes of maximum distance and constructions using Singer groups
    Angel Navarro-Perez, Miguel
    Soler-Escriva, Xaro
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2022, 80
  • [30] Improved Constructions for Nonbinary Quantum BCH Codes
    Qian, Jianfa
    Zhang, Lina
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1355 - 1363