Sufficient Conditions for the Global Rigidity of Periodic Graphs

被引:0
|
作者
Viktória E. Kaszanitzky
Csaba Király
Bernd Schulze
机构
[1] Budapest University of Technology and Economics,Department of Operations Research
[2] The MTA-ELTE Egerváry Research Group on Combinatorial Optimization,Department of Mathematics and Statistics
[3] Eötvös Loránd Research Network (ELKH),undefined
[4] ELTE Eötvös Loránd University,undefined
[5] Lancaster University,undefined
来源
关键词
Rigidity; Global rigidity; Body-bar framework; Periodic framework; 52C25; 05B35; 05C10; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
Tanigawa (2016) showed that vertex-redundant rigidity of a graph implies its global rigidity in arbitrary dimension. We extend this result to periodic frameworks under fixed lattice representations. That is, we show that if a generic periodic framework is vertex-redundantly rigid, in the sense that the deletion of a single vertex orbit under the periodicity results in a periodically rigid framework, then it is also periodically globally rigid. Our proof is similar to the one of Tanigawa, but there are some added difficulties. First, it is not known whether periodic global rigidity is a generic property in dimension d>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d>2$$\end{document}. We work around this issue by using slight modifications of recent results of Kaszanitzky et al. (2021). Secondly, while the rigidity of finite frameworks in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} on at most d vertices obviously implies their global rigidity, it is non-trivial to prove a similar result for periodic frameworks. This is accomplished by extending a result of Bezdek and Connelly (2002) on the existence of a continuous motion between two equivalent d-dimensional realisations of a single graph in R2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{2d}$$\end{document} to periodic frameworks. As an application of our result, we give a necessary and sufficient condition for the global rigidity of generic periodic body-bar frameworks in arbitrary dimension. This provides a periodic counterpart to a result of Connelly et al. (2013) regarding the global rigidity of generic finite body-bar frameworks.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条