Pulse shape analysis in Gerda Phase II

被引:0
|
作者
M. Agostini
G. Araujo
A. M. Bakalyarov
M. Balata
I. Barabanov
L. Baudis
C. Bauer
E. Bellotti
S. Belogurov
A. Bettini
L. Bezrukov
V. Biancacci
E. Bossio
V. Bothe
V. Brudanin
R. Brugnera
A. Caldwell
C. Cattadori
A. Chernogorov
T. Comellato
V. D’Andrea
E. V. Demidova
N. Di Marco
E. Doroshkevich
F. Fischer
M. Fomina
A. Gangapshev
A. Garfagnini
C. Gooch
P. Grabmayr
V. Gurentsov
K. Gusev
J. Hakenmüller
S. Hemmer
R. Hiller
W. Hofmann
J. Huang
M. Hult
L. V. Inzhechik
J. Janicskó Csáthy
J. Jochum
M. Junker
V. Kazalov
Y. Kermaïdic
H. Khushbakht
T. Kihm
K. Kilgus
A. Kirsch
I. V. Kirpichnikov
A. Klimenko
机构
[1] INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute,Institute of Physics
[2] INFN Laboratori Nazionali del Gran Sasso and Università degli Studi dell’Aquila,Institut für Kern
[3] INFN Laboratori Nazionali del Sud, und Teilchenphysik
[4] Jagiellonian University,Department of Physics and Astronomy
[5] Technische Universität Dresden,Dipartimento di Fisica
[6] Joint Institute for Nuclear Research,Dipartimento di Fisica
[7] European Commission,Institute for Theoretical and Experimental Physics
[8] JRC-Geel,Physik Department
[9] Max-Planck-Institut für Kernphysik,Dipartimento di Fisica e Astronomia
[10] University College London,Physikalisches Institut
[11] Università Milano Bicocca,Physik
[12] INFN Milano Bicocca,Institut
[13] Università degli Studi di Milano and INFN Milano,Institut für Experimentelle Teilchenphysik
[14] Institute for Nuclear Research of the Russian Academy of Sciences,Physik Department
[15] NRC “Kurchatov Institute”,undefined
[16] National Research Centre “Kurchatov Institute”,undefined
[17] Max-Planck-Institut für Physik,undefined
[18] Technische Universität München,undefined
[19] Università degli Studi di Padova,undefined
[20] INFN Padova,undefined
[21] Eberhard Karls Universität Tübingen,undefined
[22] Universität Zürich,undefined
[23] NRNU MEPhI,undefined
[24] Moscow Inst. of Physics and Technology,undefined
[25] Dubna State University,undefined
[26] Karlsruher Institut für Technologie,undefined
[27] Robert Bosch GmbH,undefined
[28] Nuclear Science Division,undefined
[29] Technische Universität München,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double-β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} decay in 76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{76}$$\end{document}Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011–2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015–2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular 228\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{228}$$\end{document}Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Qββ=2039\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\beta \beta }= 2039$$\end{document} keV, while preserving (81±3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(81\pm 3)$$\end{document}% of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.
引用
收藏
相关论文
共 50 条
  • [21] Liquid argon light collection and veto modeling in GERDA Phase II
    Agostini, M.
    Alexander, A.
    Araujo, G. R.
    Bakalyarov, A. M.
    Balata, M.
    Barabanov, I.
    Baudis, L.
    Bauer, C.
    Belogurov, S.
    Bettini, A.
    Bezrukov, L.
    Biancacci, V.
    Bossio, E.
    Bothe, V.
    Brugnera, R.
    Caldwell, A.
    Calgaro, S.
    Cattadori, C.
    Chernogorov, A.
    Chiu, P. -J.
    Comellato, T.
    D'Andrea, V.
    Demidova, E. V.
    Di Giacinto, A.
    Di Marco, N.
    Doroshkevich, E.
    Fischer, F.
    Fomina, M.
    Gangapshev, A.
    Garfagnini, A.
    Gooch, C.
    Grabmayr, P.
    Gurentsov, V.
    Gusev, K.
    Hakenmueller, J.
    Hemmer, S.
    Hofmann, W.
    Hult, M.
    Inzhechik, L. V.
    Csathy, J. Janicsko
    Jochum, J.
    Junker, M.
    Kazalov, V.
    Kermaidic, Y.
    Khushbakht, H.
    Kihm, T.
    Kilgus, K.
    Kirpichnikov, I. V.
    Klimenko, A.
    Knoepfle, K. T.
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (04):
  • [22] Liquid argon light collection and veto modeling in GERDA Phase II
    M. Agostini
    A. Alexander
    G. R. Araujo
    A. M. Bakalyarov
    M. Balata
    I. Barabanov
    L. Baudis
    C. Bauer
    S. Belogurov
    A. Bettini
    L. Bezrukov
    V. Biancacci
    E. Bossio
    V. Bothe
    R. Brugnera
    A. Caldwell
    S. Calgaro
    C. Cattadori
    A. Chernogorov
    P. -J. Chiu
    T. Comellato
    V. D’Andrea
    E. V. Demidova
    A. Di Giacinto
    N. Di Marco
    E. Doroshkevich
    F. Fischer
    M. Fomina
    A. Gangapshev
    A. Garfagnini
    C. Gooch
    P. Grabmayr
    V. Gurentsov
    K. Gusev
    J. Hakenmüller
    S. Hemmer
    W. Hofmann
    M. Hult
    L. V. Inzhechik
    J. Janicskó Csáthy
    J. Jochum
    M. Junker
    V. Kazalov
    Y. Kermaïdic
    H. Khushbakht
    T. Kihm
    K. Kilgus
    I. V. Kirpichnikov
    A. Klimenko
    K. T. Knöpfle
    The European Physical Journal C, 83
  • [23] Keeping the Background Low: Production and Testing of the GERDA Phase II Detectors
    Hemmer, Sabine
    2013 3RD INTERNATIONAL CONFERENCE ON ADVANCEMENTS IN NUCLEAR INSTRUMENTATION, MEASUREMENT METHODS AND THEIR APPLICATIONS (ANIMMA), 2013,
  • [24] Background rejection of n+ surface events in GERDA Phase II
    Lehnert, Bjoern
    XIV INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS (TAUP 2015), PTS 1-7, 2016, 718
  • [25] Active background suppression with the liquid argon scintillation veto of GERDA Phase II
    Agostini, M.
    Allardt, M.
    Bakalyarov, A. M.
    Balata, M.
    Barabanov, I.
    Baudis, L.
    Bauer, C.
    Bellotti, E.
    Belogurov, S.
    Belyaev, S. T.
    Benato, G.
    Bettini, A.
    Bezrukov, L.
    Bode, T.
    Borowicz, D.
    Brudanin, V.
    Brugnera, R.
    Caldwell, A.
    Cattadori, C.
    Chernogorov, A.
    D'Andrea, V.
    Demidova, E. V.
    Di Marco, N.
    Domula, A.
    Doroshkevich, E.
    Egorov, V.
    Falkenstein, R.
    Frodyma, N.
    Gangapshev, A.
    Garfagnini, A.
    Gooch, C.
    Grabmayr, P.
    Gurentsov, V.
    Gusev, K.
    Hakenmueller, J.
    Hegai, A.
    Heisel, M.
    Hemmer, S.
    Hofmann, W.
    Hult, M.
    Inzhechik, L. V.
    Csathy, J. Janicsko
    Jochum, J.
    Junker, M.
    Kazalov, V.
    Kihm, T.
    Kirpichnikov, I. V.
    Kirsch, A.
    Kish, A.
    Klimenko, A.
    XXVII INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS (NEUTRINO2016), 2017, 888
  • [26] GeFRO, a New Front-End Approach for the Phase II of the GERDA Experiment
    Cattadori, Carla
    Giachero, Andrea
    Gotti, Claudio
    Maino, Matteo
    Pessina, Gianluigi
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 1463 - 1465
  • [27] Phase II upgrade of the Gerda experiment for the search of neutrinoless double beta decay
    Majorovits, B.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 254 - 259
  • [28] INFLUENCE OF PHASE CANCELLATION AND PULSE SHAPE ARTIFACTS ON ULTRASONIC SPECTRUM ANALYSIS
    HEYMAN, JS
    CANTRELL, JH
    WINFREE, WP
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1980, 27 (03): : 168 - 169
  • [29] GERDA Phase II detectors: behind the production and characterisation at low background conditions
    Maneschg, Werner
    LOW RADIOACTIVITY TECHNIQUES 2013 (LRT 2013), 2013, 1549 : 54 - 57
  • [30] Search for exotic physics in double-,Q decays with GERDA Phase II
    Agostini, M.
    Alexander, A.
    Araujo, G.
    Bakalyarov, A. M.
    Balata, M.
    Barabanov, I.
    Baudis, L.
    Bauer, C.
    Belogurov, S.
    Bettini, A.
    Bezrukov, L.
    Biancacci, V.
    Bossio, E.
    Bothe, V.
    Brugnera, R.
    Caldwell, A.
    Calgaro, S.
    Cattadori, C.
    Chernogorov, A.
    Comellato, T.
    D'Andrea, V.
    Demidova, E. V.
    Di Giacinto, A.
    Di Marco, N.
    Doroshkevich, E.
    Fischer, F.
    Fomina, M.
    Gangapshev, A.
    Garfagnini, A.
    Gooch, C.
    Grabmayr, P.
    Gurentsov, V.
    Gusev, K.
    Hakenmueller, J.
    Hemmer, S.
    Hofmann, W.
    Huang, J.
    Hult, M.
    Inzhechik, L. V.
    Csathy, J. Janicsko
    Jochum, J.
    Junker, M.
    Kazalov, V.
    Kermaidic, Y.
    Khushbakht, H.
    Kihm, T.
    Kilgus, K.
    Kirpichnikov, I. V.
    Klimenko, A.
    Knoepfle, K. T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (12):