On complex variable method in finite elasticity

被引:0
|
作者
Ade Akinola
机构
[1] Obafemi Awolowo University,Mathematics Department
关键词
73G05; Analyticity; complex potentials; fundamental problems; finite deformation; anisotropic parameter;
D O I
10.1007/BF02936191
中图分类号
学科分类号
摘要
We highlight the alternative presentation of the Cauchy-Riemann conditions for the analyticity of a complex variable function and consider plane equilibrium problem for an elastic transversely isotropic layer, in finite deformation. We state the fundamental problems and consider traction boundary value problem, as an example of fundamental problem-one. A simple solution of “Lame's problem” for an infinite layer is obtained. The profile of the deformed contour is given; and this depends on the order of the term used in the power series specification for the complex potential and on the material constants of the medium.
引用
收藏
页码:183 / 198
页数:15
相关论文
共 50 条
  • [41] Complex variable function method for the plane elasticity and the dislocation problem of quasicrystals with point group 10 mm
    Li, Lian He
    Fan, Tian You
    PHYSICS LETTERS A, 2008, 372 (04) : 510 - 514
  • [42] An improved complex variable element-free Galerkin method for two-dimensional elasticity problems
    Bai Fu-Nong
    Li Dong-Ming
    Wang Jian-Fei
    Cheng Yu-Min
    CHINESE PHYSICS B, 2012, 21 (02)
  • [43] THE COMPLEX VARIABLE ELEMENT-FREE GALERKIN (CVEFG) METHOD FOR TWO-DIMENSIONAL ELASTICITY PROBLEMS
    Peng, Miaojuan
    Liu, Pei
    Cheng, Yumin
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2009, 1 (02) : 367 - 385
  • [44] Functions of a complex variable in problems in the theory of elasticity with mass forces
    Sharafutdinov, G. Z.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2009, 73 (01): : 48 - 62
  • [45] A virtual crack extension method for thermoelastic fracture using a complex-variable finite element method
    Tamayo, Daniel Ramirez
    Montoya, Arturo
    Millwater, Harry
    ENGINEERING FRACTURE MECHANICS, 2018, 192 : 328 - 342
  • [46] A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity
    Becker, Roland
    Burman, Erik
    Hansbo, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) : 3352 - 3360
  • [47] Finite Difference Schemes for the Cauchy–Navier Equations of Elasticity with Variable Coefficients
    Bernard Bialecki
    Andreas Karageorghis
    Journal of Scientific Computing, 2015, 62 : 78 - 121
  • [48] THE RANDOM VARIATIONAL PRINCIPLE IN FINITE DEFORMATION OF ELASTICITY AND FINITE ELEMENT METHOD
    高行山
    张汝清
    Applied Mathematics and Mechanics(English Edition), 1994, (10) : 903 - 911
  • [49] A cell-based smoothed finite element method for finite elasticity
    Francis, Amrita
    Natarajan, Sundararajan
    Lee, Changkye
    Budarapu, Pattabhi R.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2022, 23 (06): : 536 - 550
  • [50] Transient thermomechanical sensitivity analysis using a complex-variable finite element method
    Rios, G. Aaron
    Sebastian Rincon Tabares, Juan
    Montoya, Arturo
    Restrepo, David
    Millwater, Harry
    JOURNAL OF THERMAL STRESSES, 2022, 45 (05) : 341 - 374