Magneto-inertial fusion with laser compression of a magnetized spherical target

被引:0
|
作者
I. Yu. Kostyukov
S. V. Ryzhkov
机构
[1] Russian Academy of Sciences,Institute of Applied Physics
[2] Bauman Moscow State Technical University,undefined
来源
Plasma Physics Reports | 2011年 / 37卷
关键词
Plasma Physic Report; Inertial Confinement Fusion; Spherical Target; Laser Driver; High Power Laser Beam;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to the principles of magneto-inertial fusion and laser-plasma methods of generation of a Megagauss field during spherical implosion of a magnetized target. A model based on a magnetic confinement system, namely, a cusp configuration with inertial compression of the target by a laser driver, is developed. The dynamics of plasma in a cusp compressed under the effect of laser beams is precalculated. Analytical and numerical estimates of the particle number and magnetic field intensity during magneto-inertial plasma compression are obtained. The problems of irradiation of a spherically closed volume by a high-energy laser pulse are discussed.
引用
收藏
页码:1092 / 1098
页数:6
相关论文
共 50 条
  • [31] Magnetized Target Fusion with a Spherical Tokamak
    Michel Laberge
    Journal of Fusion Energy, 2019, 38 : 199 - 203
  • [32] 2D modeling of fusion ignition conditions for a multilayer plasma liner magneto-inertial fusion target in a cylindrical configuration
    Thompson, Seth
    Cassibry, Jason
    PHYSICS OF PLASMAS, 2020, 27 (02)
  • [33] Magnetized Target Fusion with a Spherical Tokamak
    Laberge, Michel
    JOURNAL OF FUSION ENERGY, 2019, 38 (01) : 199 - 203
  • [34] Macron Formed Liner as a Practical Method for Enabling Magneto-Inertial Fusion
    David Kirtley
    John Slough
    Journal of Fusion Energy, 2010, 29 : 561 - 566
  • [35] Calculation of burn characteristics for fuel pellet simulated in magneto-inertial fusion
    Mahdavi, M.
    Gholami, A.
    FUSION ENGINEERING AND DESIGN, 2019, 142 : 33 - 39
  • [36] Magneto-inertial waves in a rotating sphere
    Schmitt, D.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2010, 104 (2-3): : 135 - 151
  • [37] Magneto-inertial confinement of turbulent plasma
    Rypdal, K
    Paulsen, JV
    Fredriksen, H
    JOURNAL DE PHYSIQUE IV, 1995, 5 (C6): : 137 - 140
  • [38] Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment
    Degnan, J. H.
    Amdahl, D. J.
    Domonkos, M.
    Lehr, F. M.
    Grabowski, C.
    Robinson, P. R.
    Ruden, E. L.
    White, W. M.
    Wurden, G. A.
    Intrator, T. P.
    Sears, J.
    Weber, T.
    Waganaar, W. J.
    Frese, M. H.
    Frese, S. D.
    Camacho, J. F.
    Coffey, S. K.
    Makhin, V.
    Roderick, N. F.
    Gale, D. G.
    Kostora, M.
    Lerma, A.
    McCullough, J. L.
    Sommars, W.
    Kiuttu, G. F.
    Bauer, B.
    Fuelling, S. R.
    Siemon, R. E.
    Lynn, A. G.
    Turchi, P. J.
    NUCLEAR FUSION, 2013, 53 (09)
  • [39] Relativistic Weibel instability in magneto-inertial fusion using Krook collision model
    Belghit, Slimen
    Zaidi, Beddiaf
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (02)
  • [40] Lasergate: A windowless gas target for enhanced laser preheat in magnetized liner inertial fusion
    Galloway, B. R.
    Slutz, S. A.
    Kimmel, M. W.
    Rambo, P. K.
    Schwarz, J.
    Geissel, M.
    Harvey-Thompson, A. J.
    Weis, M. R.
    Jennings, C. A.
    Field, E. S.
    Kletecka, D. E.
    Looker, Q.
    Colombo, A. P.
    Edens, A. D.
    Smith, I. C.
    Shores, J. E.
    Speas, C. S.
    Speas, R. J.
    Spann, A. P.
    Sin, J.
    Gautier, S.
    Sauget, V.
    Treadwell, P. A.
    Rochau, G. A.
    Porter, J. L.
    PHYSICS OF PLASMAS, 2021, 28 (11)