Holomorphic curvature of complex Finsler submanifolds

被引:0
|
作者
ChunPing Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Science China Mathematics | 2010年 / 53卷
关键词
Holomorphic curvature; complex Finsler metric; complex Finsler submanifold; 32C10; 53C60; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document} be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F} $$\end{document}. Let D be the complex Rund connection associated to (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection ∇ on (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) and the holomorphic curvature of the intrinsic complex Rund connection ∇* on (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) coincide; (b) the holomorphic curvature of ∇* does not exceed the holomorphic curvature of D; (c) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}).
引用
收藏
页码:261 / 274
页数:13
相关论文
共 50 条
  • [21] Horizontal complex curves and holomorphic curvature
    Watt, C
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (03): : 465 - 495
  • [22] On the theory of Finsler submanifolds
    Bejancu, A
    [J]. FINSLERIAN GEOMETRIES: A MEETING OF MINDS, 2000, 109 : 111 - 129
  • [23] On Finsler geometry of submanifolds
    Zhongmin Shen
    [J]. Mathematische Annalen, 1998, 311 : 549 - 576
  • [24] SUBMANIFOLDS OF A FINSLER MANIFOLD
    RASTOGI, SC
    [J]. TENSOR, 1976, 30 (02): : 140 - 144
  • [25] On Finsler geometry of submanifolds
    Shen, ZM
    [J]. MATHEMATISCHE ANNALEN, 1998, 311 (03) : 549 - 576
  • [26] HOLOMORPHIC APPROXIMATION ON TOTALLY REAL SUBMANIFOLDS OF A COMPLEX MANIFOLD
    HARVEY, FR
    WELLS, RO
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (05) : 824 - &
  • [27] Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature
    Boyom, Michel Nguiffo
    Siddiqui, Aliya Naaz
    Othman, Wan Ainun Mior
    Shahid, Mohammad Hasan
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 809 - 817
  • [28] Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds
    Jain, Varun
    Rani, Rachna
    Kumar, Rakesh
    Nagaich, R. K.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (03)
  • [29] SEMIINVARIANT SUBMANIFOLDS OF A KENMOTSU MANIFOLD WITH CONSTANT PHI-HOLOMORPHIC SECTIONAL CURVATURE
    SINHA, BB
    SRIVASTAVA, AK
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1992, 23 (11): : 783 - 789
  • [30] Complex Finsler vector bundles with positive Kobayashi curvature
    Feng, Huitao
    Liu, Kefeng
    Wan, Xueyuan
    [J]. MATHEMATICAL RESEARCH LETTERS, 2020, 27 (05) : 1325 - 1339