Holomorphic curvature of complex Finsler submanifolds

被引:0
|
作者
ChunPing Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Science China Mathematics | 2010年 / 53卷
关键词
Holomorphic curvature; complex Finsler metric; complex Finsler submanifold; 32C10; 53C60; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a complex n-dimensional manifold endowed with a strongly pseudoconvex complex Finsler metric F. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document} be a complex m-dimensional submanifold of M, which is endowed with the induced complex Finsler metric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F} $$\end{document}. Let D be the complex Rund connection associated to (M, F). We prove that (a) the holomorphic curvature of the induced complex linear connection ∇ on (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) and the holomorphic curvature of the intrinsic complex Rund connection ∇* on (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) coincide; (b) the holomorphic curvature of ∇* does not exceed the holomorphic curvature of D; (c) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) is totally geodesic in (M, F) if and only if a suitable contraction of the second fundamental form B(·, ·) of (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}) vanishes, i.e., B(χ, ι) = 0. Our proofs are mainly based on the Gauss, Codazzi and Ricci equations for (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M},\mathcal{F} $$\end{document}).
引用
收藏
页码:261 / 274
页数:13
相关论文
共 50 条