A novel approach to measuring fluid saturation using X-ray computed tomography

被引:0
|
作者
Sobhan Sheikhi
Alexander Burukhin
Alexey Cheremisin
机构
[1] Skolkovo Institute of Science and Technology,
来源
关键词
Saturation; Geochemical Modeling; Cross-section Analysis; CT Scan; Scanning Energies;
D O I
暂无
中图分类号
学科分类号
摘要
Digital rock analysis using X-ray computer tomography (CT scan) is an ongoing topic for studying the porous media in geothermal, natural gas, and petroleum industries. This study provides a novel approach to calculating fluid saturation in low permeability cores utilizing X-ray computed tomography. In the present study, synthetic low permeability cores were used to analyze two-phase saturation at atmospheric pressure and temperature. In the experiments, no dopant was used for visualizing different phases. As a novelty of the paper, PHREEQC geochemical software was employed to verify the saturation of X-ray CT scanning through modeling the geochemical reaction between aqueous and gaseous phases. This study presents a novel and reliable approach to verify the saturation of X-ray CT scan through geochemical modeling. The results of this study also prove that using the saturation of mass balance as the initial condition of the geochemical modeling leads to an excellent agreement between the saturation of CT scan and geochemical modeling. According to the results obtained, there is a 24% difference between gas saturation in CT scan and mass balance method, while such discrepancy is only 13% between gas saturation in CT scan and geochemical modeling.
引用
收藏
页码:2708 / 2715
页数:7
相关论文
共 50 条
  • [41] X-ray computed tomography using curvelet sparse regularization
    Wieczorek, Matthias
    Frikel, Juergen
    Vogel, Jakob
    Eggl, Elena
    Kopp, Felix
    Noel, Peter B.
    Pfeiffer, Franz
    Demaret, Laurent
    Lasser, Tobias
    MEDICAL PHYSICS, 2015, 42 (04) : 1555 - 1565
  • [42] Defects Characterization in CFRP Using X-ray Computed Tomography
    Liu, Xueshu
    Chen, Fei
    POLYMERS & POLYMER COMPOSITES, 2016, 24 (02): : 149 - 154
  • [43] Computed tomography of x-ray images using neural networks
    Allred, LG
    Jones, MH
    Sheats, MJ
    Davis, AW
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 460 - 468
  • [44] X-ray computed tomography reconstruction using scattered radiation
    Takemoto, Kazuma
    Yamazaki, Yoichi
    Toda, Naohiro
    Proceedings of the 20th EGS Users' Meeting in Japan, 2013, : 1 - 8
  • [45] Testing loaded samples using X-ray computed tomography
    Vasil'ev, S. L.
    Artem'ev, A. V.
    Bakulin, V. N.
    Yurgenson, S. A.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2016, 52 (05) : 294 - 302
  • [46] Study of Soil Compaction Using X-Ray Computed Tomography
    Al-Hattamleh, O.
    Razavi, M. R.
    Muhunthan, B.
    JORDAN JOURNAL OF CIVIL ENGINEERING, 2008, 2 (02) : 111 - 123
  • [47] X-ray computed tomography using sparsity based regularization
    Liu, Li
    Lin, Weikai
    Pan, Jing
    Jin, Mingwu
    NEUROCOMPUTING, 2016, 173 : 256 - 269
  • [48] Testing loaded samples using X-ray computed tomography
    S. L. Vasil’ev
    A. V. Artem’ev
    V. N. Bakulin
    S. A. Yurgenson
    Russian Journal of Nondestructive Testing, 2016, 52 : 294 - 302
  • [49] MANAGING ERRORS WITH X-RAY COMPUTED-TOMOGRAPHY (X-RAY CT) WHEN MEASURING PHYSICAL-PROPERTIES
    TOLLNER, EW
    DAVIS, JW
    VERMA, BP
    TRANSACTIONS OF THE ASAE, 1989, 32 (03): : 1090 - 1096
  • [50] X-ray Computed Tomography Inspection of novel Ceramic Matrix Composites
    Brierley, Nick
    Chrzan, Karin
    Günnewig, Olaf
    Kessel, Fiona
    Backe, Daniel
    e-Journal of Nondestructive Testing, 2023, 28 (08):