ALORA: Affine Low-Rank Approximations

被引:0
|
作者
Alan Ayala
Xavier Claeys
Laura Grigori
机构
[1] INRIA Paris,Laboratoire Jacques
[2] Sorbonne Université,Louis Lions
[3] Univ Paris-Diderot SPC,Laboratoire Jacques
[4] CNRS,Louis Lions
[5] équipe ALPINES,undefined
[6] Sorbonne Université,undefined
[7] Univ Paris-Diderot SPC,undefined
[8] CNRS,undefined
[9] INRIA,undefined
[10] équipe ALPINES,undefined
来源
关键词
Low rank; QR factorization; Subspace iteration; Affine subspaces; 65F25; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present the concept of affine low-rank approximation for an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} matrix, consisting in fitting its columns into an affine subspace of dimension at most k≪min(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ll \min (m,n)$$\end{document}. We present the algorithm ALORA that constructs an affine approximation by slightly modifying the application of any low-rank approximation method. We focus on approximations created with the classical QRCP and subspace iteration algorithms. For the former, we discuss existing pivoting techniques and provide a bound for the error when an arbitrary pivoting technique is used. For the case of fsubspace iteration, we prove a result on the convergence of singular vectors, showing a bound that agrees with the one recently proved for the convergence of singular values. Finally, we present numerical experiments using challenging matrices taken from different fields, showing good performance and validating the theoretical framework.
引用
收藏
页码:1135 / 1160
页数:25
相关论文
共 50 条
  • [31] Transformation of Categorical Features into Real Using Low-Rank Approximations
    Fonarev, Alexander
    INFORMATION RETRIEVAL, RUSSIR 2014, 2015, 505 : 253 - 262
  • [32] ON THE STABILITY OF ROBUST DYNAMICAL LOW-RANK APPROXIMATIONS FOR HYPERBOLIC PROBLEMS
    Kusch, Jonas
    Einkemmer, Lukas
    Ceruti, Gianluca
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01): : A1 - A24
  • [33] On the Accuracy of Cross and Column Low-Rank Maxvol Approximations in Average
    Zamarashkin, N. L.
    Osinsky, A., I
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (05) : 786 - 798
  • [34] OPTIMAL LOW-RANK APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Solonen, Antti
    Cui, Tiangang
    Martin, James
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2451 - A2487
  • [35] A NEW PRECONDITIONER THAT EXPLOITS LOW-RANK APPROXIMATIONS TO FACTORIZATION ERROR
    Higham, Nicholas J.
    Mary, Theo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A59 - A82
  • [36] FREQUENCY-LIMITED BALANCED TRUNCATION WITH LOW-RANK APPROXIMATIONS
    Benner, Peter
    Kuerschner, Patrick
    Saak, Jens
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A471 - A499
  • [37] KOLMOGOROV WIDTHS AND LOW-RANK APPROXIMATIONS OF PARAMETRIC ELLIPTIC PDES
    Bachmayr, Markus
    Cohen, Albert
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 701 - 724
  • [38] Image Completion with Filtered Low-Rank Tensor Train Approximations
    Zdunek, Rafal
    Fonal, Krzysztof
    Sadowski, Tomasz
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II, 2019, 11507 : 235 - 245
  • [39] BEST LOW-RANK APPROXIMATIONS AND KOLMOGOROV n-WIDTHS
    Floater, Michael S.
    Manni, Carla
    Sande, Espen
    Speleers, Hendrik
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 330 - 350
  • [40] ALRA: Adaptive Low-Rank Approximations for Neural Network Pruning
    Sinha, Soumen
    Sinha, Rajen Kumar
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 1636 - 1641