ALORA: Affine Low-Rank Approximations

被引:0
|
作者
Alan Ayala
Xavier Claeys
Laura Grigori
机构
[1] INRIA Paris,Laboratoire Jacques
[2] Sorbonne Université,Louis Lions
[3] Univ Paris-Diderot SPC,Laboratoire Jacques
[4] CNRS,Louis Lions
[5] équipe ALPINES,undefined
[6] Sorbonne Université,undefined
[7] Univ Paris-Diderot SPC,undefined
[8] CNRS,undefined
[9] INRIA,undefined
[10] équipe ALPINES,undefined
来源
关键词
Low rank; QR factorization; Subspace iteration; Affine subspaces; 65F25; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present the concept of affine low-rank approximation for an m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} matrix, consisting in fitting its columns into an affine subspace of dimension at most k≪min(m,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ll \min (m,n)$$\end{document}. We present the algorithm ALORA that constructs an affine approximation by slightly modifying the application of any low-rank approximation method. We focus on approximations created with the classical QRCP and subspace iteration algorithms. For the former, we discuss existing pivoting techniques and provide a bound for the error when an arbitrary pivoting technique is used. For the case of fsubspace iteration, we prove a result on the convergence of singular vectors, showing a bound that agrees with the one recently proved for the convergence of singular values. Finally, we present numerical experiments using challenging matrices taken from different fields, showing good performance and validating the theoretical framework.
引用
收藏
页码:1135 / 1160
页数:25
相关论文
共 50 条
  • [1] ALORA: Affine Low-Rank Approximations
    Ayala, Alan
    Claeys, Xavier
    Grigori, Laura
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (02) : 1135 - 1160
  • [2] Correction to: ALORA: Affine Low-Rank Approximations
    Alan Ayala
    Xavier Claeys
    Laura Grigori
    Journal of Scientific Computing, 2019, 80 (3) : 1997 - 1997
  • [3] ALORA: Affine Low-Rank Approximations (vol 79, pg 1135, 2019)
    Ayala, Alan
    Claeys, Xavier
    Grigori, Laura
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1997 - 1997
  • [4] Low-rank approximations of hyperbolic embeddings
    Jawanpuria, Pratik
    Meghwanshi, Mayank
    Mishra, Bamdev
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7159 - 7164
  • [5] LOW-RANK APPROXIMATIONS FOR DYNAMIC IMAGING
    Haldar, Justin P.
    Liang, Zhi-Pei
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1052 - 1055
  • [6] The geometry of weighted low-rank approximations
    Manton, JH
    Mahony, R
    Hua, YB
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (02) : 500 - 514
  • [7] Mixed precision low-rank approximations and their application to block low-rank LU factorization
    Amestoy, Patrick
    Boiteau, Olivier
    Buttari, Alfredo
    Gerest, Matthieu
    Jezequel, Fabienne
    L'excellent, Jean-Yves
    Mary, Theo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2198 - 2227
  • [8] Two Rank Approximations for Low-Rank Based Subspace Clustering
    Xu, Fei
    Peng, Chong
    Hu, Yunhong
    He, Guoping
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [9] Learning-Based Low-Rank Approximations
    Indyk, Piotr
    Vakilian, Ali
    Yuan, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Robust low-rank data matrix approximations
    XingDong Feng
    XuMing He
    Science China Mathematics, 2017, 60 : 189 - 200