VC-Dimension of Sets of Permutations

被引:0
|
作者
Ran Raz
机构
[1] Department of Applied Mathematics,
[2] Weizmann Institute; Rehovot 76100,undefined
[3] ISRAEL; E-mail: ranraz@wisdom.weizmann.ac.il,undefined
来源
Combinatorica | 2000年 / 20卷
关键词
AMS Subject Classification (1991) Classes:  05A05, 05A16, 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
of a set of permutations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} to be the maximal k such that there exist distinct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} that appear in A in all possible linear orders, that is, every linear order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is equivalent to the standard order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for at least one permutation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:241 / 255
页数:14
相关论文
共 50 条
  • [41] VC-dimension of a context-dependent Perceptron
    Ciskowski, P
    MODELING AND USING CONTEXT, PROCEEDINGS, 2001, 2116 : 429 - 432
  • [42] On the VC-dimension and boolean functions with long runs
    Ratsaby, Joel
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (02): : 205 - 225
  • [43] The VC-Dimension of Visibility on the Boundary of a Simple Polygon
    Gibson, Matt
    Krohn, Erik
    Wang, Qing
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 541 - 551
  • [44] Minimum Polygons for Fixed Visibility VC-Dimension
    Beck, Moritz
    Storandt, Sabine
    COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 65 - 77
  • [45] Lower bound on VC-dimension by local shattering
    Erlich, Y
    Chazan, D
    Petrack, S
    Levy, A
    NEURAL COMPUTATION, 1997, 9 (04) : 771 - 776
  • [46] VC-Dimension of Hyperplanes Over Finite Fields
    Ruben Ascoli
    Livia Betti
    Justin Cheigh
    Alex Iosevich
    Ryan Jeong
    Xuyan Liu
    Brian McDonald
    Wyatt Milgrim
    Steven J. Miller
    Francisco Romero Acosta
    Santiago Velazquez Iannuzzelli
    Graphs and Combinatorics, 2025, 41 (2)
  • [47] MEASURING THE VC-DIMENSION OF A LEARNING-MACHINE
    VAPNIK, V
    LEVIN, E
    LECUN, Y
    NEURAL COMPUTATION, 1994, 6 (05) : 851 - 876
  • [48] Unlabeled compression schemes exceeding the VC-dimension
    Palvolgyi, Domotor
    Tardos, Gabor
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 102 - 107
  • [49] The VC-dimension of set systems defined by graphs
    Carleton University, School of Computer Science, Ottawa, Ont. K1S 5B6, Canada
    不详
    不详
    不详
    Discrete Appl Math, 3 (237-257):
  • [50] The VC-dimension of visibility on the boundary of monotone polygons
    Gibson, Matt
    Krohn, Erik
    Wang, Qing
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 77 : 62 - 72