Exact Bounds for Judicious Partitions of Graphs

被引:0
|
作者
B. Bollobás
A. D. Scott
机构
[1] Department of Pure Mathematics and Mathematical Statistics; 16 Mill Lane,
[2] Cambridge CB2 1SB,undefined
[3] England and Department of Mathematical Sciences,undefined
[4] University of Memphis; Memphis TN 38152; E-mail: bollobas@ibex.msci.memphis.edu,undefined
[5] Department of Pure Mathematics and Mathematical Statistics; 16 Mill Lane,undefined
[6] Cambridge CB2 1SB,undefined
[7] England and Department of Mathematical Sciences,undefined
[8] University of Memphis; Memphis,undefined
[9] TN 38152 and Department of Mathematics,undefined
[10] University College London; Gower Street,undefined
[11] London WC1E 6BT; E-mail: scott@math.ucl.ac.uk,undefined
来源
Combinatorica | 1999年 / 19卷
关键词
AMS Subject Classification (1991) Classes:  05C35;
D O I
暂无
中图分类号
学科分类号
摘要
has a bipartite subgraph of size at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We show that every graph of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} has a bipartition in which the Edwards bound holds, and in addition each vertex class contains at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} edges. This is exact for complete graphs of odd order, which we show are the only extremal graphs without isolated vertices. We also give results for partitions into more than two classes.
引用
收藏
页码:473 / 486
页数:13
相关论文
共 50 条
  • [41] On problems about judicious bipartitions of graphs
    Ji, Yuliang
    Ma, Jie
    Yan, Juan
    Yu, Xingxing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 : 230 - 250
  • [42] A bound on judicious bipartitions of directed graphs
    Jianfeng Hou
    Huawen Ma
    Xingxing Yu
    Xia Zhang
    [J]. Science China Mathematics, 2020, 63 : 297 - 308
  • [43] Max k-cut and judicious k-partitions
    Bollobas, Bela
    Scott, Alex
    [J]. DISCRETE MATHEMATICS, 2010, 310 (15-16) : 2126 - 2139
  • [44] Brick partitions of graphs
    Jackson, Bill
    Jordan, Tibor
    [J]. DISCRETE MATHEMATICS, 2010, 310 (02) : 270 - 275
  • [45] Partitions of graphs into cographs
    Gimbel, John
    Nesetril, Jaroslav
    [J]. DISCRETE MATHEMATICS, 2010, 310 (24) : 3437 - 3445
  • [46] PARTITIONS OF GRAPHS INTO TREES
    CHUNG, FRK
    [J]. DISCRETE MATHEMATICS, 1978, 23 (01) : 23 - 30
  • [47] Complete partitions of graphs
    Halldorsson, Magnus M.
    Kortsarz, Guy
    Radhakrishnan, Jaikumar
    Sivasubramanian, Sivaramakrishnan
    [J]. COMBINATORICA, 2007, 27 (05) : 519 - 550
  • [48] Partitions of graphs into trees
    Biedl, Therese
    Brandenburg, Franz J.
    [J]. GRAPH DRAWING, 2007, 4372 : 430 - +
  • [49] Complete partitions of graphs
    Magnús M. Halldórsson
    Guy Kortsarz
    Jaikumar Radhakrishnan
    Sivaramakrishnan Sivasubramanian
    [J]. Combinatorica, 2007, 27
  • [50] Star partitions on graphs
    Andreatta, G.
    De Francesco, C.
    De Giovanni, L.
    Serafini, P.
    [J]. DISCRETE OPTIMIZATION, 2019, 33 : 1 - 18