Projectively flat arctangent Finsler metric

被引:0
|
作者
Yu Y.-Y. [1 ]
机构
[1] Department of Mathematics, Zhejiang University
来源
基金
中国国家自然科学基金;
关键词
β)-metric; Arctangent Finsler metric; Flag curvature; Projectively flat;
D O I
10.1631/jzus.2006.A2097
中图分类号
学科分类号
摘要
In this work, we study a class of special Finsler metrics F called arctangent Finsler metric, which is a special (α, β)-metric, where α is a Riemannian metric and β is a 1-form. We obtain a sufficient and necessary condition that F is locally projectively flat if and only if α and β satisfy two special equations. Furthermore we give the non-trivial solutions for F to be locally projectively flat. Moreover, we prove that such projectively flat Finsler metrics with constant flag curvature must be locally Minkowskian.
引用
收藏
页码:2097 / 2103
页数:6
相关论文
共 50 条
  • [21] Projectively Flat Fourth Root Finsler Metrics
    Li, Benling
    Shen, Zhongmin
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 138 - 145
  • [22] Some constructions of projectively flat Finsler metrics
    Xiaohuan Mo
    Zhongmin Shen
    Chunhong Yang
    Science in China Series A, 2006, 49 : 703 - 714
  • [23] Reduction of certain projectively flat Finsler metrics
    Zheng, Daxiao
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 65 : 160 - 175
  • [24] Projectively Flat Finsler Spaces with Transformed Metrics
    Shanker, Gauree
    Rani, Sarita
    Kaur, Kirandeep
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2023, 18 (02): : 31 - 50
  • [25] Some constructions of projectively flat Finsler metrics
    Mo Kwhuan
    Shen Zhongmin
    Yang Chunhong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 703 - 714
  • [26] On a class of locally projectively flat Finsler metrics
    Li, Benling
    Shen, Zhongmin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
  • [27] ON A CLASS OF LOCALLY PROJECTIVELY FLAT FINSLER METRICS
    Mo, X. H.
    Zhu, H. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 735 - 746
  • [28] On a New Class of Projectively Flat Finsler Metrics
    Li, Ying
    Song, Wei-Dong
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (01): : 57 - 63
  • [29] Projectively flat Finsler metrics with orthogonal invariance
    Huang, Libing
    Mo, Xiaohuan
    ANNALES POLONICI MATHEMATICI, 2013, 107 (03) : 259 - 270
  • [30] DUALLY FLAT AND PROJECTIVELY FLAT FINSLER WARPED PRODUCT STRUCTURES
    Zhang, Xiaoling
    Zhang, Xuesong
    Zhao, Lili
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1359 - 1370