Projectively flat arctangent Finsler metric

被引:0
|
作者
Yu Y.-Y. [1 ]
机构
[1] Department of Mathematics, Zhejiang University
来源
基金
中国国家自然科学基金;
关键词
β)-metric; Arctangent Finsler metric; Flag curvature; Projectively flat;
D O I
10.1631/jzus.2006.A2097
中图分类号
学科分类号
摘要
In this work, we study a class of special Finsler metrics F called arctangent Finsler metric, which is a special (α, β)-metric, where α is a Riemannian metric and β is a 1-form. We obtain a sufficient and necessary condition that F is locally projectively flat if and only if α and β satisfy two special equations. Furthermore we give the non-trivial solutions for F to be locally projectively flat. Moreover, we prove that such projectively flat Finsler metrics with constant flag curvature must be locally Minkowskian.
引用
收藏
页码:2097 / 2103
页数:6
相关论文
共 50 条
  • [1] Projectively flat arctangent Finsler metric
    YU Yao-yong (Department of Mathematics
    Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2006, (12) : 2097 - 2103
  • [3] Projectively flat Asanov Finsler metric
    Han Jing-wei
    Yu Yao-yong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06): : 963 - 968
  • [4] Projectively flat Asanov Finsler metric
    Jing-wei Han
    Yao-yong Yu
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 963 - 968
  • [6] Projectively flat exponential Finsler metric
    Yu Y.-Y.
    You Y.
    Journal of Zhejiang University-SCIENCE A, 2006, 7 (6): : 1068 - 1076
  • [7] On projectively flat Finsler space with a cubic (α, ß) metric
    Tripathi, Brijesh Kumar
    Khan, Sadika
    Chaubey, V. K.
    FILOMAT, 2023, 37 (26) : 8975 - 8982
  • [8] GEOMETRY OF LOCALLY PROJECTIVELY FLAT FINSLER SPACE WITH CERTAIN (α, β)-METRIC
    Abbaniramakrishnappa, Ajaykumar
    Kumar, Pradeep
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (01): : 193 - 203
  • [9] On projectively flat Finsler spaces
    Binh, T. Q.
    Kertesz, D. Cs.
    Tamassy, L.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (04) : 383 - 400
  • [10] On projectively flat Finsler spaces
    T. Q. Binh
    D. Cs. Kertész
    L. Tamássy
    Acta Mathematica Hungarica, 2013, 141 : 383 - 400