Broadband miniaturized spectrometers with a van der Waals tunnel diode

被引:0
|
作者
Md Gius Uddin
Susobhan Das
Abde Mayeen Shafi
Lei Wang
Xiaoqi Cui
Fedor Nigmatulin
Faisal Ahmed
Andreas C. Liapis
Weiwei Cai
Zongyin Yang
Harri Lipsanen
Tawfique Hasan
Hoon Hahn Yoon
Zhipei Sun
机构
[1] Aalto University,Department of Electronics and Nanoengineering
[2] Aalto University,QTF Centre of Excellence
[3] Shanghai Jiao Tong University,Key Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering
[4] Zhejiang University,College of Information Science and Electronic Engineering and State Key Laboratory of Modern Optical Instrumentation
[5] University of Cambridge,Cambridge Graphene Centre
[6] School of Electrical Engineering and Computer Science,Department of Semiconductor Engineering
[7] Gwangju Institute of Science and Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Miniaturized spectrometers are of immense interest for various on-chip and implantable photonic and optoelectronic applications. State-of-the-art conventional spectrometer designs rely heavily on bulky dispersive components (such as gratings, photodetector arrays, and interferometric optics) to capture different input spectral components that increase their integration complexity. Here, we report a high-performance broadband spectrometer based on a simple and compact van der Waals heterostructure diode, leveraging a careful selection of active van der Waals materials- molybdenum disulfide and black phosphorus, their electrically tunable photoresponse, and advanced computational algorithms for spectral reconstruction. We achieve remarkably high peak wavelength accuracy of ~2 nanometers, and broad operation bandwidth spanning from ~500 to 1600 nanometers in a device with a ~ 30×20 μm2 footprint. This diode-based spectrometer scheme with broadband operation offers an attractive pathway for various applications, such as sensing, surveillance and spectral imaging.
引用
收藏
相关论文
共 50 条
  • [21] Phonon-assisted transport in van der Waals heterostructure tunnel devices
    M'foukh, A.
    Saint-Martin, J.
    Dollfus, P.
    Pala, M.
    SOLID-STATE ELECTRONICS, 2022, 194
  • [22] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [23] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [24] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [25] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [26] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [27] Van der Waals quintessence
    Capozziello, S
    De Martino, S
    Falanga, M
    PHYSICS LETTERS A, 2002, 299 (5-6) : 494 - 498
  • [28] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [29] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16
  • [30] Van der Waals rectifiers
    Steven L. Bernasek
    Nature Nanotechnology, 2013, 8 : 80 - 81