Generalized absolute Hausdorff summability of orthogonal series

被引:0
|
作者
K. Kalaivani
G. P. Youvaraj
机构
[1] University of Madras,Ramanujan Institute for Advanced Study in Mathematics
来源
Acta Mathematica Hungarica | 2013年 / 140卷
关键词
(; ,; ) summability; Hausdorff summability; Cesàro summability; regular summability matrix; 40C05; 40C31;
D O I
暂无
中图分类号
学科分类号
摘要
For 1≦k≦2 and a sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma :={\{\gamma(n)\}}_{n=1}^{\infty}$\end{document} that is quasi β-power monotone decreasing with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\beta>1-\frac{1}{k}}$\end{document}, we prove the |A,γ|k summability of an orthogonal series, where A is either a regular or Hausdorff matrix. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\beta>-\frac{3}{4}}$\end{document}, we give a necessary and sufficient condition for |A,γ|k summability, where A is Hausdorff matrix. Our sufficient condition for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\beta>-\frac{3}{4}}$\end{document} is weaker than that of Kantawala [1], \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\beta>-\frac{1}{k}}$\end{document} for |E,q,γ|k summability; and of Leindler [4], β>−1 for |C,α,γ|k, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\alpha<\frac{1}{4}}$\end{document}. Also, our result generalizes the result of Spevakov [6] for |E,q,1|1 summability.
引用
收藏
页码:169 / 186
页数:17
相关论文
共 50 条