Generalized absolute Hausdorff summability of orthogonal series

被引:3
|
作者
Kalaivani, K. [1 ]
Youvaraj, G. P. [1 ]
机构
[1] Univ Madras, Ramanujan Inst Adv Study Math, Madras 600005, Tamil Nadu, India
关键词
(E; q); summability; Hausdorff summability; Cesaro summability; regular summability matrix;
D O I
10.1007/s10474-013-0313-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1a parts per thousand broken vertical bar ka parts per thousand broken vertical bar 2 and a sequence that is quasi beta-power monotone decreasing with , we prove the |A,gamma| (k) summability of an orthogonal series, where A is either a regular or Hausdorff matrix. For , we give a necessary and sufficient condition for |A,gamma| (k) summability, where A is Hausdorff matrix. Our sufficient condition for is weaker than that of Kantawala [1], for |E,q,gamma| (k) summability; and of Leindler [4], beta >-1 for |C,alpha,gamma| (k) , . Also, our result generalizes the result of Spevakov [6] for |E,q,1|(1) summability.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 50 条